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Chapter 1

Introduction

The motivation for this project was to address some questions on the effects of finite
size in systems which have until now only been considered in the limit of infinite size.
For example what are the effects of the edge on a finite array of quantum dots and how
does a finite length affect the properties of quantum wires.

There has been much effort on the calculations on extended arrays of dots and wires
[1, 2, 3, 4] and on single dots and wires [5, 6, 7, 8, 9]. Also of interest is to see how
a hard-wall confinement affects quantum dots. Some calculations have been done on
such systems, but only for two electrons [10].

From the beginning it was my goal to construct a versatile model which could be
used to investigate many types of confined systems, e.g. single dots and wires with
different confinement potentials and finite array of dots or wires. Loosely speaking the
only limitation is that the wavefunction should have a finite support, but there are also
considerations concerning the competing length-scales when a magnetic field is applied.

The main effort of this thesis was to consider size and modulation effects on the
absorption spectrum in finite systems. The size was systematically increased and, at
the same time, different modulation potential were applied to the system.



Chapter 2

Mesoscopic systems: An introduction

The most convenient way to characterize mesoscopic systems is through the transport
behaviour of the electrons. There are two important length scales which determine
the transport properties of a conducting sample. First there is the elastic scattering
length or mean free path ¢ which is a measure of the average distance travelled by
an electron between two scattering impurities in the sample. The phase information
of the wavefunction is not lost in these scattering processes, which are independent of
temperature. The other scattering mechanism is inelastic scattering caused by lattice
vibration and electron-electron interaction. The phase of the wavefunction is lost in
these scattering events, which depend on temperature. The average distance travelled
between the scattering events is called the phase coherence length /.

For low temperatures, when inelastic scatting due to the lattice vibrations is almost
frozen out, the coherence length can exceed the sample dimension, or £4 > L, where L
is the sample size. Under these condition new phenomena such as electron interference
can drastically change the transport properties of the sample and Ohms law is no longer
applicable. In this regime the electrons can travel through the whole sample without
loosing phase coherence. This is the mesoscopic regime [11, 12].

Elastic scattering is independent of temperature simply because the impurities, e.g.
substitutional atoms in the lattice, are not temperature dependent (apart form impurity
diffusion which is affected by temperature). Thus elastic scattering can only be reduced
by reducing the number of impurities in the sample. Furthermore for high purity
samples where ¢ > L one enters the ballistic transport regime where the electrons can
travel through the sample without being scattered except at its boundaries.

The key to making mesoscopic samples is micro- or nanofabrication, i.e. the abil-
ity to make structures of submicrometer size. In the last two decades manufacturing
techniques have allowed dimensions to be reduced and the sample purity increased so
that creating a high mobility two dimensional electron gas is possible [13]. Further-
more, systems in one and zero dimensions have also been made. In zero dimensional
structures, which are called quantum dots or artificial atoms, the electrons are strongly
confined in all directions and, instead of a continuous bandstructure, a discrete energy
spectrum is formed.



Using these new devices previous theoretical predictions have been verified and new
surprising behaviour has been observed in experiments!.

2.1 Two dimensional electron gas

The usual starting point for manufacturing systems in reduced dimensions is the two
dimensional electron gas (2DEG). This introduction will focus on how the 2DEG is
made at the interface of an AlGaAs-GaAs heterojunction.

The high quality samples are grown using molecular beam epitaxy (MBE) which
achives atomic layer precision in growing heterogeneous structures. The general scheme
for growing the heterostructure is as follows: First a layer of GaAs is grown on a
substrate, usually made of GaAs. On top of it a layer of undoped Al,Ga;_,As (z is the
fraction of Al in the blend) and then a layer of Si doped Al,Ga;_,As is grown, see Fig.
2.1. The Si atoms act as donors for the 2DEG and the undoped layer acts as a barrier
between the electrons and the donors to minimize electron scattering by the ionized
donors. On top of this a final GaAs layer is grown, a so called cap layer which keeps
the Al from oxidizing. Real samples are much more elaborate, commonly a superlattice
is grown on the the substrate to improve smoothness of subsequent layers and the Si
doping is modulated to maximize mobility [14].

AlGaAlL:Si
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Figure 2.1: A growth sequence for a typical AlGaAs-GaAs heterojunction. At the
interface of two substances atomic-layer accuracy is achieved in MBE. The figure is
not to scale.

When the GaAs, which is slightly p-doped, comes into contact with the Al,Ga;_,As
electron flow across the interface. The flow from the n-doped region into the GaAs is

!Nobel prices in physics in 1985 for the IQHE and in 1998 the FQHE



in order to establish an equilibrium charge distribution, which is characterized by a
continuous chemical potential across the interface. Equilibrium is reached when the
electron flow from the donors is counteracted by the electric field created by the charge
transfer across the interface. We assume that the electric field changes smoothly, not
affecting the effective mass or bandgaps of the materials. Under these conditions the
effect of the electrostatic potential is only a modulation of the band edges as shown in
Fig. 2.2. The conduction and valence band edges are denoted by E. and E,, respectively,
€.,1 1s the first transverse energy level and p is the chemical potential.
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Figure 2.2: Band structure of the heterostructure before and after contact. The chem-
ical potential is fixed and the band edges bend due to the electric potential.

Fig. 2.2a shows the band structure assuming a space-charge neutrality [15] and the
effect of the electric potential on the band bending without considering the undoped
buffer layer shown in Fig. 2.2b. At the conduction band discontinuity, at the interface,
the electrons are ‘caught’ in a well which can be assumed to be approximately linear
in z (the distance from the interface) into the GaAs and infinite in the AlGaAs. The
first choice to approximate the eigenfunctions are usually the Airy functions. For more
accurate results self-consistent calculations using Fang-Howard wavefunctions is the
most popular method [16].

2.2 Lateral potential modulation and confinement

There are several ways of making lateral structures in the 2DEG. The most widely
used, and the best controlled, are lithographic methods. These methods are based
on either etching or growing lateral patterns on the sample which can influence the
distribution of electron in the underlying 2DEG.

In order to grow or etch structures on the sample some sort of a mask has to be
placed on it. This mask, or resist, usually consists of a polymer solution with which
the sample is coated, e.g. poly-methyl methacryle (PMMA), being the most commonly
used resist in nanostructure fabrication [17]. The resist is selectively radiated according



to the pattern desired. When the resist is exposed to the radiation the polymer chains
become weaker due to breaking of chemical bonds. After exposure the resist can be
removed by immersing it in a solution which does not affect the unradiated part, see
Fig. 2.3. Note that this process is similar to photography, just on a smaller scale.
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Figure 2.3: Figure (a) shows the clean sample. After the resist has been deposited (b),
selective radiation of the resist (c) causes breaking of chemical bonds. Afterwards the
sample is ‘developed’ by immersion in a solvent leaving the unradiated area intact (d).

The resolution of the pattern in the resist depends on the wavelength of the radiation
used. For light and UV radiation the highest resolution is ~ 0.1 gm, which is the best
the industry can achieve today for mass production. To obtain higher resolution for
smaller patterns different radiation source has to be used. For a resolution of sub 10 nm
electron beams are used to write on the resist.

After the mask (the pattern on the resist) is in place one can proceed either with
an additive (growth, evaporation) or subtractive (etching) process to transfer the final
pattern onto the sample. Here both cases will be discussed by considering specific
examples.

2.2.1 Additive processes

When the mask is ready one can proceed with adding a structure on top of the sample.
As an example of a additive process a metal-semiconductor contact depositions will be
considered. The metal is evaporated on top of the sample resulting in a layer of metal
on the exposed area of the sample and the resist.

If the thickness of the metal is less than the resist, as is shown in Fig. 2.4a, the metal
not touching the sample can be removed by lift-off technique. In the lift-off process the
sample is immersed in a solution which cleans of the resist and in the process removing
all metal which is only attached to the resist.
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Figure 2.4: A thin metal film is evaporated on the sample (a) and if its thickness is
less then that of the resist lift-off can be used to remove the unwanted metal.

When the metal has been deposited it serves as a contact and by applying a negative
voltage the electrons below it can be driven off by increasing their potential energy in
that region. Depending on the bias either the density is lowered or the 2DEG is totally
depleted under the contact.

2.2.2 Subtractive processes

To make an hole or a valley in the sample some sort of solvent is used to etch through
the sample. Selective solvent that leaves the resist unaffected, or at least etches it much
more slowly than the sample, is chosen. After the desired depth is reached the resist
is removed. On this structure further crystal growth can be performed. Etching the
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Figure 2.5: A solution that etches the sample material is used to make structures in
the sample (a) and after that the resist is removed (b).

samples can be done by using either dry or wet etching. Reactive gases or plasma are
used in the dry etching. This method is anisotropic since the etching is in the direction
of the ion bombardment. Wet etching uses solvents to make the desired pattern onto the
sample. It can be anisotropic because different crystallographic planes have different
etch rates.

If the sample in Fig. 2.1 is etched into the donor layer, fewer donors will contribute
to the 2DEG in that region, causing a lower density in the 2DEG under the etched
area.



2.2.3 A finite array of antidots

Is is possible to etch all the way into the 2DEG, or totally depleting it electrostatically,
thus confining it laterally. This also applies to electrostatic depletion. These methods
can be used to make a confined 2DEG whose size is such that the lateral energy levels
become quantized. It is worth mentioning that etching through the electron gas can
introduce edge defects affecting the 2DEG properties.

Finally an atomic force microscope picture of a real sample of a finite array of
antidots is shown in Fig. 2.6. This sample was made by etching the AlGaAs donor
layer in the region of the black dots [18], i.e. lowering the 2DEG density. The lateral
confinement is made by etching into the sample and thus depleting the 2DEG below.
The box confinement is not complete in the corners since these are used as contacts for
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Figure 2.6: An atomic force microscope picture of the antidot sample. The size of the
confined region is 2.4 ym and the interdot distance is 240 nm

resistance measurements. Current is passed through contacts ¢ and j and voltage drop
from k to [ is measured under perpendicular magnetic field. Commensurability effects
are seen in the resistance measurements as electrons are ‘caught’ in pinned orbits that
circle one or four dots, depending on the magnetic field, thus increasing the resistance.



Chapter 3

Ground state properties

The system considered consists of electrons at an AlGaAs-GaAs interface. In addition
the electrons are confined to a finite region in the plane at the interface. Inside this
region there is a modulating potential. The size of this region is such that the lateral
energy levels are quantized, opposed to the continuous spectrum of an extended electron
gas. How this lateral confinement affects the behaviour of the electrons and how the
properties of the system change as the size of the confining region is increased is of
interest.

The ground state properties of an electron system are described by the many-body
Schrédinger equation. The exact many-body wavefunction is usually not tractable
so approximations have to be made. The simplest approximation is to totally ig-
nore the electron-electron interaction, resulting in a single particle spectrum. A better
approximation, to be used here, is to include the electron interaction in the Hartree ap-
proximation. The Hartree spectrum consists of effective single particle states (Hartree
states). From the eigenstates and energies, various properties, e.g. particle density,
current density and magnetization are calculated.

3.1 Single particle solution

The Hamiltonian for a single particle includes no term describing the contribution from
the electron interaction. It only includes the kinetic operator and the external confining
and modulating potential. The potential depends on the structure of the sample and
the medium in which the electron is confined.

3.1.1 The Hamiltonian

The single particle Hamiltonian (which is a hermitian operator) for an electron in a
magnetic field (e>0) and an external potential Ve is given by

Hy = T+V

1
= 5 =P+ eA)” + Veu(r)
1, N e?
T om* P 2m*

€ €
A%+ — A pt oD, Al + Veu (1), (3.1)
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The effects of the GaAs lattice potential are included in the effective mass m*. The
lattice potential also changes the dielectric constant from the vacuum value ¢ to € =
keg. For GaAs the effective electron mass is m* = 0.067mg and k = 12.4 [19]. Apart
from this the lattice potential has almost no effect on the electrons since the Bohr
radius a; in GaAs is much larger than the lattice period.

Areh?
m*e?

*

alo ==

K
= o~ 185 ay,

mo
giving aj = 9.8nm compared to the lattice constant ¢ = 0.57nm for GaAs. The
wavefunction only ‘sees’ the average of the lattice potential over many periods, which
is approximately constant.
We can assume that at the AlGaAs-GaAs junction the external potential can be
separated into perpendicular and parallel parts, with respect to the interface

Ve (r) = Vi (1)) + Vi (2). (3.2)

The perpendicular potential contains the conduction band structure, shown schemat-
ically in Fig. (2.2) which is strongly confining. This confinement is the origin of the

2DEG.
The parallel potential is divided into a confining and a modulating potential

Vi(ry) = Veont(ry) + Vinoa (1y)- (3.3)

The lateral confinement causing the system to be finite is chosen to be of a hard-wall
type

(0 ifrex
Veont = { oo otherwise (3.4)

where Y. is some region in the plane of the interface.
The applied magnetic field is constant and perpendicular to the electron gas B =
Be,. The vector potential is chosen to be

A(r) = g (- (y - %) , (a: - %) ,0) (3.5)

where L, and L, are the side lengths in the z and y directions respectively, see Fig. 3.1.
This choice of gauge, the symmetric gauge! plus a constant term, is convenient due to
symmetry reasons which become clear when the matrix elements of the Hamiltonian
are calculated, see appendix A.

'In the symmetric gauge the vector potential is A(r) = £ (—y,z,0) [20].
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The commutator in eq. (3.1) is zero for this choice of gauge and thus the kinetic
term can be separated into parallel and perpendicular parts

T =T)(r)) +T.(2).

Thus the Shrodinger equation is solved by splitting the Hamiltonian into parallel
and perpendicular parts Hy = H, + H, and separating variables. This reduces the
problem of solving Hy) = €9 to solving two separate equations

Hyy(r)) = ety (ry) and H 9, (z) = e, . (2). (3.6)
The spectrum for the total Hamiltonian is
e=¢ +eL and P(r) =Y (r))Y.(2). (3.7)

Due to the perpendicular confinement the electron gas is very thin, of the order 8-
20nm. This causes large separation between transverse energy levels €,, typically
20-30 eV while the lateral level spacing is of the order of few meV. For normal electron
densities and low temperatures only the first transverse level is occupied. To a first
approximation, the transverse direction only shifts the lateral energy levels. The wave-
function in the transverse direction affects the electron-electron interaction as discussed
in section 3.2. Considering these points, a good approximation is to assume that the
electron gas has no width and ignore the transverse direction.
Focusing on the lateral Hamiltonian the kinetic operator can be written as

no=te (i)t ((-%) 2 - -9 4)

s (%) + -9 39

introducing the magnetic length ¢2 = eiB and the cyclotron frequency w, = an as

the natural length and energy scale respectively. The external potential confines the
electrons to a rectangular region

= {I.II|"L‘E (07L$)7y€ (07Ly)}'

The modulating potential in ¥ is assumed to be

M M
Vmod(r”)zVosin2< z”)sin2< L”*”) (3.9)

Y

which models an array of quantum dots or antidots depending on the sign of V;. The
number of dots/antidots in the « and y direction is M, and M, respectively. The total
Hamiltonian for a single electron in ¥ is thus

Hy =T, + Vinod- (3.10)

12
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Figure 3.1: The geometry of the system. The left figure shows a schematic poten-
tial contour where the hatched region has infinite potential energy. On the right the
modulating potential is drawn with M, =3 ,M, =2 and V; < 0.

3.1.2 The wavefunctions

The electron states of the system are found by solving the Schrédinger equation

Hp = e, (3.11)

where H = T, 4 Vinoq. This eigenvalue problem and the boundary condition that 1) = 0
on 0X determine the possible set of solutions. For B = 0 and Vj,0q = 0 the Hamiltonian
is the two dimensional Laplacian operator whose eigenfunctions are

2 2
Xon (2, Y) = ,/L—msin(”g?) L—ysin<"L—7Z/). (3.12)

These functions are used as a basis when solving the general case (B # 0 and Viyoq # 0)
in eq. (3.11), i.e. we write the wavefunctions as

W(z,y) = ! ic \/ 2 sin mn 2 sin nmy (3.13)
Y) = c : m'n Lz Lx Ly Ly .
where ¢ = (3 |¢pwm|?)? is the normalization constant.
It is convenient to introduce an inner product of two functions # and ¢ on X

(6,0) = / &r(r,) O(r,). (3.14)

Taking the inner product of eq. (3.12) and the left hand side of eq. (3.11) one obtains

1 o0
(an,Hl[’) = - Zcm’n’ (anaHXm’n’)

m/,n'=1

1 o
= - it Ho i 3.15
= > Hom, (3.15)

m',n'=1

13



where the matrix elements are defined as

Hmn m'n! = (an;HXm’n’) (316)

Doing the same for the right hand side of eq. (3.11) and using the fact that there exist
bijective maps

:(m,n) —> ¢ (3.17)

one can formally write the Schrédinger equation as the infinite system

H1,1 C1 C1
Hee Heepr .. | =¢ | & (3.18)
He+1,e Co+1 Cet1

whose eigensolutions are the Fourier coefficients of the corresponding exact eigenfunc-
tion of eq. (3.11).

The choice of the sine basis allows the matrix elements to be solved analytically,
since the integrals are standard trigonometric integrals. The calculations of the matrix
elements are discussed in detail in appendix A.

3.1.3 Diagonalizing a finite matrix

Having transformed the Schrédinger equation into an eigenvector problem we can pro-
ceed by solving

Hc = ec (3.19)

using standard methods of linear algebra. But first the basis has to be cut to a finite
size, i.e. only keeping the first mua and nua, sine-basis functions in the x and y
direction respectively

MM[ax "Max

DD O

m’,n'=1 m'=1 n'=1

In a mpyax X Nyax basis for the eigenfunctions eq. (3.13) the eigenvectors have
dimension N = myr.xNaax and the matrix H is N x N. Before constructing the matrix
we have to assign to each pair (m,n) a unique integer from 1 to N, to retrieve what
mode (m,n) belongs to component ¢; after solving eq. (3.19). This is achieved with
the mapping

L(myn) =m~+ (n — 1)Mypax (3.20)

14



which has the required properties of

01,1 = 1

E(mMax, nMax) = MMaxMMax = V.

Solving the N x N eigenvalue problem gives N eigensolutions. The eigenfunctions
corresponding to the lowest eigenvalues are better approximations to the correct eigen-
solutions of the higher eigenvalues. To improve the accuracy the size of the basis is
usually chosen to be at least 4x larger than the number of eigensolutions actually
needed in the calculations. The size of the total basis, IV, is normally between 50 and
500, depending on system size, magnetic field and modulation.

This problem of cutting the basis can be formulated using variational calculations.
Using eq. (3.13) and minimizing the Rayleigh quotient

7(% Hy) (3.21)

(¥, )

with respect to the c-coefficients we again obtain eq. (3.19). Cutting the basis can thus
be viewed as postulating a solution by using a finite sum and minimizing the energy
with respect to the truncated subspace.

For B = 0 the sine-functions in the Fourier series are eigenfunctions of 7| and,
depending on the modulation and the number of particles, the size of the basis can be
kept modest. But as the magnetic field is increased the wavefunctions become localized
in a region of radius

Re =621 +1, (3.22)

where n is the Landau level index. This quantum number is not a ‘good’ one in this
model but as the system size or magnetic field increases Landau levels are formed and
the n-index becomes applicable. As R, gets smaller compared to L;, L, the number of
coefficients required increases. Also cutting the basis affects higher states in a complex
way. Empirically checking the effects of increasing the basis on the spectrum are the
best tools to check the accuracy of the eigensolutions.

3.2 Hartree approximation

To model the behaviour of electrons in a realistic manner their mutual interaction
has to be included. One way to include the interaction is to postulate effective single
particle states from which a specific many body wavefunction is constructed. This is
the philosophy of any mean-field theory, like the Hartree-Fock approximation. In this
chapter the Hartree-Fock equations are derived be minimizing the total energy of the
electrons. Since we are dealing with a two dimensional system a 2D version of the
equations will be derived.

15



In the calculations only the direct term, which is due to electrostatic repulsion of
the electrons, is taken into consideration. The direct term is a solution of the Poisson
equation for the electron charge density in the system. Finally the Hartree equations
are solved. This is non-trivial since the equations are non-linear and have to be solved
iteratively in order to apply the standard methods of linear algebra.

3.2.1 Hartree-Fock equations

To accurately model a real system electron interaction has to be included. The natural
formalism for this is the many-body Hamiltonian describing a system of N; electrons
in three dimensions [21]

Ne /72 L e?
H:. ( *+U(ri))+527 (3.23)

oyt Aelr; — ;|

where the generalized momentum 7; = p; + eA of particle ¢ has been introduced. The
potential U contains the external potential and the electrostatic potential caused by
background charges. These charges are ionized donors which ensure charge neutrality.
The many-body Schrédinger equation is given as

HY =E0, (3.24)
where the wavefunction including all the electrons is
U= \Il(rlsla reS9, ..., rNsst) (325)

with spatial coordinates r; and spin s;. Although the Hamiltonian H is not spin
dependent the wavefunction has to contain spin indices for correct symmetry properties.

Solving eq. (3.24) exactly is not possible except for few particles using numerically
exact diagonalization [7]. To solve the equation? some sort of approximations and
assumptions about the structure of the wavefunction have to be made. In the Hartree-
Fock approximation the wavefunction is assumed to be of the form

V= et (ays) (3.26)
¢i(r1s1)  Pi(rese) ... Hi(rw,sw,)

_ ]1\7! (/52(r:131) ¢2(1’2252) </52(r1\:fsSNs) , (3.27)
T b (t1s1) o, (x285) .. b, (tmisw.)

which is antisymmetric under particle interchange. The single particle wavefunctions
are solutions of

HHF¢i(rS) = siqbi(rs), (328)

2These calculations follow the approach used in [22].
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but Hyr is not known. To derive the Hartree-Fock single particle potential one mini-
mizes the total energy of the system, assuming the many-body wavefunction is given
by the Slater-determinant of single particle wavefunctions. The problem is thus solving
the variational equation

a¢*( ) (V| H|T) Zfz/dy¢ )oi(y ] = (3.29)

with Lagrange multipliers ¢; and introducing the generic coordinate = = (r, s).

Previous equation contained a functional derivative. Before proceeding we shall
consider a short introduction to functional derivatives. Consider a functional F'[J(t)].
The functional derivative of F' with respect to J is defined as

OF[J(1)] _ I FlJ(1) +eb(t —t)] — F[J(T)].

IO 65% €
Now looking at the functional F[J(t)] = f dr f(7)J(7) the derivative becomes
OF[J(T)] _ f f )+ed(r—1)— [ f(r
C9J(t) ) e—>0 €
= f(t) (3.30)

To simplify the notation in the following equations a generic two particle potential
v(z,z") = v(a',z) is used to represent the Coulomb interaction. The definition of the
functional derivative can be applied to eq. (3.29)

0 N . 72
065 () [ 2 ] i) (Qm* + U<y>) #i(y)
+ %Z / dydy'; ()05 (y" vy, y')i(y)d;(y")

- Zs / dyo; (y)rzﬁi(y)] (3.31)

Hop

g

_ r(f )% +Z [ w6 wpte.oit)sle)

—Z/d?ﬂ/’ (2, y)$i(2)da(y) — €idalz) = 0. (3.32)

The derivatives of the double integrals® give two terms which can be added, after a

3This is the same as when a product of functions is differentiated or (fg)' = f'g +¢'f

17



change of variables ¥' — y and dummy indices j — 4. This is the reason for the
disappearance of the factor 3.

The sum over the first Ny states is due to a zero temperature. For 7" = 0 the states
with lowest energy are occupied and the Pauli exclusion principle ensures that only
one electron resides in each state. Defining the quantities

S wal)  md ) =Y GmaE) (339

as the density and the density matrix respectively the Hartree-Fock equations become

[Ho +f dyp(y)v(x,y)] bole) ~ [ dupla,y)0(a,1)6ule) = cdale). (330

For T # 0 some states above the Fermi level are partially occupied. How these
states are occupied is described by the Fermi distribution f(e; — ) where p is the
chemical potential ensuring the correct number of particles

N, = Z flei— ). (3.35)

The sums in the eq. (3.33) change when non-zero temperature is included

YRS BCEINES SI s (3.36)

where the sum is performed over all states.

When changing from the generic variable z = (r, s) one has to remember that [dy
includes a sum over spin states. Since each state is assumed to be an eigenstate of s,
eq. (3.34) can be written as

/ ¢z’( )
Hooi(x) + [ s Zfz S o)

- [ DI ﬁqb () = £64(r). (3.37)

4elr’ — r|

The former term containing the interaction is called the direct term and the latter
the exchange term. Here exchange refers to the exchange of the quantum numbers

i (r')di(r) — i (r)di(x').
3.2.2 Hartree-Fock equations in two dimensions

How does the strong confinement affect the Hartree-Fock approximation ? We split the
single particle Hamiltonian into parallel and perpendicular parts Hy = H; + H, and
write the eigenfunctions as

¢i(r) = om(r))un(2) (3.38)
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where 7 = (m,n) are the ‘quantum numbers’ in the lateral and transverse directions.
Using this separation but retaining the index 4 for the spins one can write eq. (3.37) as

Un (2) Hypom (1)) + o (r)) H L un (2)
2 1 € QDm’( ||) n’( ,)‘Pm’(rﬂ)un’(zl)
+ [ &rd2 Y fw O (1)) un(2)
/ P2 dmefle -2+ (2 =2
2.1 ey (x)) iy (2") o (1)) un (2)
d°r'd7 Jmimi Os1s;
[ 2 ey [(x = 1) + (2 = 2)?
= EmnPm(T))Un(2)- (3.39)

Som(rﬁ)un(zl)

Assuming a sufficiently strong confinement in the z direction so that only the first
transverse state is occupied n’ = 1 and neglecting interactions with higher states (n >
1) one can put both n = n’ = 1 and rewrite last equation as

U1 (2) Hypm (r)) + @ (1)) H o (2)

> e?luy (2)
+ /d |me’190m’ L ) (x u /dz WE\/(rﬁ—I‘” 2+(z’—z)2(pm(r”)u1(2)

o , e*lui (2)|? )
d°r fm’lés ISz(pm ( )(pm (I‘ ) dz (Pm(r )Ul(Z)
/ E Z i ” / 476\/(1’” —1)?+ (2 = 2)? ”

= Em1Pm(r))ui(2). (3.40)

The strong confinement localizes the wavefunctions in the z = 0 plane and the 2'-
integration is performed noting that the eigenfunctions are assumed to be normalized

[ar—
47re\/(r1| —1)2+ (2 — 2)?
~ ¢ _ (3.41)

47re\/(r|’| —r))?+ 22
This result is exact for a perfect 2DEG where |u1(2)|?> = §(z) but in other cases, if the

function |u;|? is localized around z = 0, eq. (3.41) may also apply to a high accuracy.
Using this result and dividing eq. (3.40) by u;(z) and taking the limit z — 0 one arrives
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at the Hartree-Fock for the two dimensional system

H”QOm(I‘”) + /d2 /| Z Fo e’ (pm’ ||)Q0m’ (r”)@m(r”)

dmelr) — 1|

- [ i O )

47re|r{| —r|

= Hypm(r)) + /d2 IL(JQ%(TH)

i dmelr) — 1|

B / Pr ,lz Fubs 0 w;f(r@)wm'(ru)wm(rﬂ)

dme|r — 1|

= (6m — EL,l)som(rn) (3.42)

where the transverse part is defined as
(3.43)

and p(r;) is the particle density. The transverse wavefunctions do not enter the Hartree-
Fock terms so that u; is an eigenfunction of H,. The transverse part only causes a
shift in the zero on the lateral energy scale, which will be ignored in the calculations.
This result is only valid for a perfect 2DEG. All references to the transverse quantum
number n have been ignored and the index m is used to replace 7. For quasi 2D systems
where |u;(2)|? # 6(z) the above equations are still a reasonable approximation as long
as eq. (3.41) is ‘valid’, in some sense, and if not other forms of the Coulomb interaction
can be used.

3.2.3 The Poisson equation

As was mentioned earlier the potential U in eq. (3.23) contains the interaction of the
electrons with the positive background. Assuming that the potential can be written as

_p2 _Ns
U(r) = Ve P —— 3.44
() = Veulo) & [ P (3.4
where Livzy is the donor density and the contribution of the donors is separated from

external contributions, see eq. (3.2). The donor interaction and the direct term in
eq. (3.42) are of the same type and can be combined into one equation. The Hartree
potential Vi is a solution of the Poisson equation [23]

2

V2V = —%n(r”)é(z), (3.45)
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where n is the total charge density of the system

~en(n) = = ()~ 75 (3.16)

The electron density p is the same as in eq. (3.33) and the constant term on the right
side represents the positive background. Eq. (3.44) assumes that the donors are in the
plane of the 2DEG which is not the case for real samples.

The solution of eq. (3.45) can be written on integral form as

Vi () :/er’ L (3.47)

”47re\r{| — r”|'

This integral cannot be solved analytically and when the Hartree matrix elements have
to be evaluated four dimensional numerical integration over ¥ has to be performed
(mMaXnMaX)Q-times. To avoid these lengthy numerical calculations we assume that the
Hartree potential can be written in the region X as

L. m'mx n'my
Vi (ry,0) = Z am:an/VH,m:n/cos< 7 )cos( 7 >, (3.48)

T
m! ,n'=0 Y

where the terms are weighted according to 6, = 1 — %50,m- This form is not necessary
and other ones can be used, e.g. sum over orthogonal polynomials, as long as the matrix
elements can be evaluated analytically.

The expansion coefficients are obtained using their definition, in this case

22 mrx nmy
E/ﬁerHVH(r”’O) cos( I )COS(L—y)’ (3.49)

and by solving eq. (3.45) in the Fourier space. Transforming the Poisson equation we
have

Vi ,mn —

62

—k*Vy = —?n(k”). (3.50)

The right hand side does not contain k, so the inverse Fourier transform in £, can be
performed. Using residual calculus the Hartree potential in k; is

62 e—k”\z|

Vi (ky, 2) = -n(k)——

3.01
2¢ k ( )

Thus, putting z = 0 because we are only interested in the potential at the 2DEG, we
have by the inverse transform that

62 L 2 ”’(kll) —ir-k
_ W oK)
VH(I'”,O) = <4 . ) 9 /d k” k” € , (352)
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where the characteristic length of the system is L = y/L,L,. This equation is inserted
into eq. (3.49) and the r, integration is performed analytically giving

L k
VH,m’rL = VCouI%/dQIQn(k ”)Im(kaw)In(kyLy); (353)
Il

where the ‘Coulomb energy’ as Voou = €2/4meL. The function I, is defined as
1 o
I,(z) = 2/ du cos(mmu)e™™. (3.54)
0

Only the k; integration remains and the positive background in eq. (3.46) ensures that
n(k,)/k, is defined for k, = 0. The functions I, are known analytically and the two
dimensional integral in eq. (3.53) is easy to implement using Gaussian integration on
a subdivided integration region.

Since the number of Vy ., coefficients is always less than (MMaxTax)? this method
is much more efficient and transparent than the method involving the four dimensional
integration.

3.2.4 Solving the Hartree equations

In summary the results of the previous sections can be combined into the two dimen-
sional Hartree equations

(H + Va(r)))pi(r)) = eipi(ry). (3.55)

The lateral part of the Hamiltonian is the same as in eq. (3.10) and the in-plane Hartree
potential is described by eq. (3.48).

These equations are non-linear since the Hartree potential contains the density, i.e.
the potential is a functional of all the solutions

Vi (r)) = Val{pi}d (). (3.56)

This causes some problems when solving the equations. Here an iterative method is
used to solve them. One starts with a set of wavefunctions which is used to calculate
the Hartree potential. Then eq. (3.55) is solved using the method in section 3.1.2
to obtain a new set of solutions. This process is continued until the change in the
solutions is less than some tolerance 6. One usually starts with a set of non-interacting
solutions and continues from there. Assuming that a solution exists this process may
converge. In reality this is not the case. Strong oscillations occur in the solutions
which often overshoot the ‘equilibrium’ solutions. This effect can be avoided if the
Hartree potential is turned on slowly or adiabatically. Instead of using the full Hartree
potential a mixture of the current and previous is used according to

VI = vl 41— v (3.57)
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where A\ € (0, 1) is the mixing parameter and [k] is the iteration number. The tolerance
is defined as the relative difference in the Hartree potential between two loops, see the
flowchart in Fig. (3.2). It is usually chosen between 1072 — 10~2. The convergence is
normally quite fast and higher values of the mixing parameter converge faster, as long
as oscillations are avoided.

Initial set of solutions
[o] [o]
{0, &)

Hartree potential calculated
from the set

01 ol 117
(9, &)= Vy

Hartree potential turned on
adiabatically

_ S Ik < Lk 1k
Hartree equations solved and| | Vy; = AVy +(1-A) Vék o
a new set is obtained

o
{0, &)

H vk _ oyl H Convergence achieved
H H <5 with the solution
No | v | Yes (0 &)

Figure 3.2: Flow chart for the Hartree iteration.
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Chapter 4

FIR absorption

Far-infrared absorption spectroscopy is a convenient way to probe the energy structure
of mesoscopic systems. It has been used to study homogeneous and modulated 2DEGs,
quantum dots and wires both by calculations and with experiments |24, 8|. Here the
absorption spectra are calculated using a self-consistent field approximation.

The density response function of the system is derived using the density operator
after its basic properties have been discussed. Then the self-consistent field is calculated
and the equations describing the absorption are derived. Finally resonances in the total
field and the absorption spectra are discussed and compared.

4.1 The density operator in linear approximation

The density operator is defined in such a way that its many body expectation value
yields the particle density. Letting n denote the particle density we can write this in
the following way

n(r) = (¥|p(r)|¥). (4.1)

For T' = 0 the first N, single particle states are occupied with probability 1 and all
other states are unoccupied. In this case the density operator is defined by [22]

p(r) = Zs: d(r —r;). (4.2)

The delta functions can be interpreted as the probability of finding the particle at r if
it is at r;. In the case of a single particle the sum is replaced by one term which yields
the normal equation for the density n = y*1.

For a Hartree type many body wavefunction, which is the product of the single
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particle states, eq. (4.1) can be written, using the Dirac notation, as

n(e) = (U a0 - r)|)

Ny

= Z<¢i|5(r —1;)| i)

= §:wmw&—rM@>

= tr{pd(r —1")}. (4.3)

In the third step a probability, or statistical operator p, was introduced which ensures
the correct occupation of the states, thus the finite sum can be replaced with a sum over
all states. The sum is just the trace over single particle states, which is a well known
result [25]. The many body information is contained in the trace and the statistical
operator so that the variable r; can be replaced by an arbitrary r’. Eq. (4.3) can
be formulated for non-zero temperatures where the temperature enters the statistical
operator p = p(T'). For equilibrium situations the statistical operator is given by

po=f(H —p), (4.4)

where f is the Fermi distribution.
The equation of motion for the statistical operator is given by

S 5(0) = - 1H, 4] (4.5)

The effect of adding a small perturbation 6V (¢) to the equilibrium hamiltonian Hy on
the density operator can be calculated by linearizing the equation of motion. First the
operators are divided into the equilibrium and a perturbed part

H(t) = Hy+ 6V (t)
p(t) = po + 6p(2). (4.6)

The external perturbing potential is assumed to be harmonic and turned on adiabat-
ically so that H = Hy when ¢+ — —oo. This is done by including a factor €” in the
perturbing potential, where n — 0*. The adiabatic factor is necessary since it is not
enough to assume that the perturbation is ‘small’ because an infinitesimal perturbation
acting for a long enough time can change the ground state [26]. In that case it is no
longer valid to speak of a perturbation of the ground state since it may have completely
changed.

Because the unperturbed wavefunctions are simultaneous eigenfunctions of Hy and
pPo one can obtain the matrix elements of 6p. Using the Fourier transform of the

25



linearized equation of motion eq. (4.5) the matrix elements of the statistical operator
can be written as

ng — Ny

D = 4.

where wag = (€a — €5)/h, and n, = f(eo — p) is the occupation of state «, i.e.
polar) = nala).

The matrix element of the statistical operator can be used to calculate the induced
density. Inserting the perturbation part into eq. (4.3) we otains the induced density

on(r,w) = tr{é(r —r")dp}
= ()65 ()5 ()
ap

hw — hwep + ihn

= / d'r’ (Z%(r)wz(r) mp e w:;(r'wg(r')) oV (r', w)
ap

/ &' D(r, v, )6V (r' w), (4.8)

which defines the density response function D(r,r’,w). The integral comes from the
matrix element of the perturbing potential. Eq. (4.8) relates the perturbing potential
to the density change through equilibrium state quantities only, which is the hallmark
of linear response. The intensity of the perturbation is irrelevant since all effects scale
linearly in the perturbation.

4.2 The self-consistent field approximation

The basic philosophy of the self-consistent field approximation is that the total field,
not just the external field, is used to calculate the induced field. When an external
field is applied to a system of charges they tend to rearrange themselves in order to
screen it. The total, self consistent field (SCF) is the sum of the external field ¢ey; and
the induced one ¢;,q caused by the charge movement. The induced field is a functional
of the SCF ¢g, thus the self-consistent scheme for the fields becomes

Psc(r, 1) = et (T, 1) + Pina[dsc (v, 7). (4.9)

Since we are interested in the response to FIR radiation with the wavelength
A = 2m¢/w > Ap, where Ap is the Fermi wavelength, the retardation effects can
be ignored. The electrons manage to keep up with the external field and no phase dif-

ference develops between ¢eyy and ¢j,q in the time domain. For a plane wave external
field

Pext (T, 1) = exsoe ™ FIH1.070) (4.10)
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the time dependence of the terms in eq. (4.9) is harmonic

o(r,t) = ¢(r,w)e™", (4.11)

C\ﬂ< @
¢ ext\/’ @ \

(pindv

Figure 4.1: The field lines for the external and the induced field are shown schematically
around the system. Close to the system the induced field is strong but decays sharply
as we move away from the system.

The induced field is given by Poisson’s equation

V2¢ina[ds] (r, w) = §5n[¢sc](r,w), (4.12)

which has the well known solution [23]

Pina (T, W) = 47T6 & ’%
) _—/d2 I”dl |(xy, 2 ”,? |(:) Ol
= _E d2r'|dz’|(i:f(z)|a ()5”(’22)|
= —4%;6 d*r', \/(rflsn_(r;nlal)ﬁz)—i_ . (4.13)

Here the z-dependence of the particle density of the 2DES is assumed to be of the form

on(ry, z,w) = on(r,w)d(z),
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and thus the induced field is a convolution of the particle density
on(r,w)

and the Coulomb potential
e 1

R,/rﬁ#—zz'

When all calculations on the z variable have been performed the limit z — 0 is taken
and all quantities will be r -dependent, i.e. a two dimensional system will remain.

4.2.1 The SCF in k-space

The quantities of interest are those which can be conveniently compared with experi-
mental results. For this reason it is convenient to work in k-space, which is the Fourier
transform of the corresponding quantity in r-space. The k; and w dependent quanti-
ties can then be compared to the wavenumber and frequency results of spectroscopic
experiments. The Fourier transform of the induced field is given by

e—k”z

kll

(&

ina(k,, w) = on(k,,w) (-4—) o

e

and the problem is shifted to finding the Fourier transform of the induced particle
density dn(ky,w).

The SCF induces a density change through the density response function D(r,r’, w)
which relates the induced density to the local perturbing field felt by the charges

onr,w) = / B D(r, v, w) (—edu(r', w)
= /d2r”dz'D(r”,r{l,w)é(z)é(z') (—eqﬁsc(rfl,z',w))
= 3() [ dxi D)) (~eduelr}, 0.0)
= 0(2)on(r,w). (4.14)
The important property of the response function
D(r,r',w) = D(r),r|,w)d(2)0(2) (4.15)

is obvious when the two dimensionality of the system is considered. The response
function gives the ‘effect’ at r which is caused at r’. Since there are only charges at
z' = 0 that can cause change and response can only occur when the charges are at
z = 0 the -functions are justified.

28



The Fourier transform of the density is thus
on(k,w) = /d2r”d2 ™It D(x,, rl,w) (—e¢sc(r”, 0, w))
N /d2rlld2r1|d2q|€ik”'r”

><D(r”,r”, w)

Gyt (el 0,))

- / Pa,D(k;, ay, ) (—edrela,0,0)) (4.16)

where the ‘Fourier transform’ of the response function is defined as
1 z -r —iq)-r]

From this equation an integral equation in ¢. can be derived (for now the z,w de-
pendence in the fields is suppressed but note that ¢g. in the integral only depends on
z=0)

Psc(ky) = Pexs(k ( )27T kluzfdQ‘lnD(kanva) (—egse(ay))

2 e—k”Z

= dext(ky) + %k /dq”D(k”,q”,w)ngsc(q”)

Pext (k) + /qu”K(k”, q; 2, W) Psc(qy), (4.18)

where an integral kernel has been introduced

e2e —k) 2

Kk, qp;2,w) = % k,

——D(ky, q,w). (4.19)

The SCF ¢ is thus represented by an integral equation. Before solving it the behaviour
of the kernel K (k, q;; 2, w) will be investigated.

4.2.2 The density response and the integral kernel

Restating the results of linear response in section 4.1 the particle density response
function can be written as

Do) = D5 s i PR )L s ()
= Znaﬂ w)pa(r))es(r)) @5 (r))Ps(r)) (4.20)
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where the ¢’s are the eigenfunctions of the interacting non-perturbed system. Inserting
the eigenfunctions of eq. (3.13) into the Fourier transform of the response function we
get

Dl x) = gy D iap(e) [ e o) g} (n)
ap

< [ e w)ea)

(2r)? Z”aﬂ dap (k) dog(a)- (4.21)

Il

Equation (4.19) relates the den51ty response to the kernel

K(r,r,w) = Qek” 27r Z”aﬂ dap(ky) dgs(ay)

= Voouns Zna k”) (@), (1.22)

where L and Vo are defined in egs. (3.52) and (3.53). A kernel of this kind, where
each term in the sum separate in k; and q, is called degenerate. This separation of
variables is a result of the rectangular confinement which allows the use of Cartesian
coordinates in the problem. This proves to be very helpful when it comes to solving
the integral equation for ¢g.

4.2.3 Solving the SCF integral equation

Now that the basic equation for the SCF has been developed we can proceed to solve
it. The field is described by an integral equation with a degenerate kernel, the integral
equation can be transformed into an algebraic equation [27]. Since we are only inter-
ested in the SCF for the 2DEG putting z = 0 simplifies the integral equation, which
becomes

Psc(ky) = ¢ext(k||)"‘/d2q|K(ku,qn§0a“)¢sa(‘ln)

das(ky)

= d’ext(k” +VCOu1 Zna k /d2 IIdaﬁ(qII)¢sc(qll)
I

_ L dap(K)) Tap
= e (k) + VCOUI% % Nag (M)T”F (4.23)

Note that Voouiag is a dimensionless quantity. The terms z,g introduced here are
expansion coefficients for the SCF given by

Tap = L2/quIIdZﬁ(qII)¢sc(qll)' (4.24)
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Using the definition for the inverse Fourier transform it is easy to show that z,s =
27 (Y, ¢sctPp) which are just the matrix elements of the SCF.

The dimension of the matrix element z,43 is the same as that of the field since the
d.p-functions are dimensionless. These coefficients are determined in a self-consistent
manner by inserting eq. (4.23) into (4.24). This gives a set of algebraic equations for
the z’s

Tap = LQ/dZ‘ludZﬁ(qn){ Pexet ()

131 q T Al
+VCou1 Znaﬂ —p = ”) Zf}

T g el
= I’ / d*qyd}g(a) bext (q;)
~ L 2 * 1
+Voou Z"aﬂ(w) o d qndaﬂ(qn)q_”da'ﬂ’ (@) ¢ T (4.25)
OL’ /3/
= L2/d2q||d2ﬂ(q”)¢ext(q”) + VCoulzﬁaﬂ (@) Aapap Tarpp
al ﬂl
= baﬁ + Z A(w)aﬁ,a’ﬁ’ {Ea/ﬂ/. (426)
al /3/

The last equation shows how the z,4’s depend on w through A(w). The integral in eq.
(4.25) is independent of w which will prove important because the most computationally
intensive calculation involves finding the A matrix elements. Due to the discrete energy
levels, w is independent of k and thus the A matrix elements need only to be calculated
once. To simplify the notation a new index a3 — 7 is used and the matrix form of eq.
(4.26) can be written as

Z((siz" — A(w)iir)zir = b; (4.27)

or in matrix form
(I —A(w))x =b. (4.28)

Solving this equation gives the induced field in eq. (4.23) caused by a specific ‘external
field’ b. The magnitude of the induced field is an indication of how strongly the charges
are affected. This last equation can be compared to the usual electrostatic equation

(1 + X)¢tot = ¢ext- (429)

If one ignores that A is a matrix , it can be interpreted as the electric susceptibility x
which indicates how much the medium is polarized. Furthermore the matrix A contains
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the depolarization shift, i.e. the deviation of the absorption energy from the energy level
differences [28, 29|, caused by the non-constant perturbing field.

It is interesting to look at whether there exist solutions of eq. (4.28) for b =0, i.e.
what are the eigenmodes of the system? The sufficient condition for (I — A(w))x =0
is that

det(l — A(w)) = 0. (4.30)

This is the well known condition for the existence of longitudinal waves (plasmon) in
an electron gas, i.e. e(w) = 0 [30].

4.2.4 The induced density

For a given system there can be many eigenmodes which satisfy eq. (4.30). The origin
of these resonances are not always known beforehand. In order to identify what kind
of charge movement is excited the induced density can be a valuable tool. For example

y [nm]

AT
A “\\\53.5/,,& \,\{,’p
'

-'.’ '. )

Figure 4.2: The ground state density, to the left, and a contour plot of the induced
density for the 3x3 system for V; = —10 meV modulation at B =0T.

the structure of the induced density can tell whether the charges of the system are
moving in ‘unison’ or if an internal charge motion is taking place. The non-resonant
frequencies give a zero induced density, which means that charge motion can not be
excited at that frequency. As an example we consider a 2 x 2 array of dots. The side
lengths are L, = L, = 300nm and the modulation is V5 = —10meV. The wave vector
lies along the diagonal. The left figure in Fig. 4.2 shows the equilibrium density where
the isolated dots can be seen and the induced density, figure to the right, shows charge
oscillations in each dot. The edge limits the charge motion and forces the induced
density to be zero at the boundary giving a standing wave-like motion.

!Compare this to Fermi’s golden rule where the field is assumed to be constant in space and thus
the transition rate contains a delta function §(Aw — (¢4 — €3))

32



4.3 The power absorption

The current that is induced in the system has to lie in the plane of the 2DEG. Thus
the current density vector has only non-zero lateral components. The induced current
is related to the total electric field through the conductivity tensor

IJ(r) = 6(2)dy(xr))
= (2 / d’r)6 (v, 1)) Esc ('), (4.31)

which is a non-local version of Ohm’s law. The conductivity tensor is written as a
2 x 2 matrix so that only the lateral components of the total field E; c(r") couple to
the in-plane current.

The power absorbed in the system can be calculated as Joule heating? of the elec-
trons. The total field interacts with the induced current resulting in a power loss

p= % / PrR{IE) B (). (4.32)

The factor % is due to the time average over the harmonic fields. Compared to eq. (4.30)
which contains all possible transitions the power absorption predominantly shows the
collective, many body transitions. Using the definition of the inverse Fourier transform
the power absorption can be written as

1 1

P sy | PR ) B, (k) (433

Inserting Ohm’s law into this equation and using the same formalism as in egs. (4.16)
and (4.17) for the conductivity tensor, we obtain a new equation for the absorption

P o= i | Pl aRiol. a)ao@) - (<ik )
= S [ PRI 09K -5 a)a)bela)
— %(2;)2 / &’k d’ qyR{ (—i) o5, (k) <k;|—:6(k”,q”) — §(k, —q”)) dee(ay)}
- %(;)3 / A’k R{ (1) & (k) ) (Dext () — e (y)) }- (4.34)

In the third step a relationship connecting ¢ and € was used. This relation is derived
in appendix B. The definitions

Pexi (k) = /dZQIn e(ky, qp)dsc(qy)
Psc(ky) = /d2q| 6(k) — qy)¢se(ay) (4.35)

2The surrounding medium absorbs all the heat generated keeping the temperature constant.
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were used in the last line of eq. (4.34). Now the final steps can be performed which
give
w
(2m)?
w

(271-)3/d2k|§R{(_i)kll¢:c(kll)¢ext(k||)}

W

% (2m)? /d2ku%{ku¢§c(k|)¢ext (k)3 (4.36)

[ R 6206 1) + el )

N — N =

For the plane wave external field in eq. (4.10) the Fourier transform is delta function
at k; = k; 0. In this case the integral in eq. (4.36) is readily evaluated and the power
absorbed is proportional to S{¢%.(k0)}-

4.4 Comparing the absorption and eigenmodes in ¢,,,

The kernel in the integral equation used to solve for the SCF includes the density re-
sponse function, as seen in eq. (4.22). The density response function contains a sum
over all transitions between different states, which means that the SCF has contribu-
tions from all possible transitions. The determinant of the matrix in eq. (4.28) can be
interpreted as a dielectric function of the electrons. The zeros of this function represent
transitions in the system and the slope at the zero identifies their type [31, 32].

In the power spectra collective excitations are dominant and single particle transi-
tions have low oscillator strength. Since Joule heating is used to define the absorption
only transition which transfer energy from the electric field to the electrons can con-
tribute to the spectrum [26].

Comparing these two methods the absorption has obvious advantages over the de-
terminant. Considering the system discussed in section 4.2.4 the absorption spectra
contains a single peak, with a slight shoulder, see Fig. 4.3. The single peak structure
is expected from the isolated dots, see section 5, and the shoulder is due to single par-
ticle transitions. The determinant is dominated by single particle transitions around
fiw =0.9meV (causing the shoulder in the absorption) and in order to identify the
collective excitation the region has to be blown up. The magnified region shows the
collective excitation around hw =1.12meV. The fact that the zeros of the real and imag-
inary part do not coincide exactly is due to the adiabatic factor An and the non-zero
external field.
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Figure 4.3: The upper left figure shows det(l — A) and the lower figure is a magnification
of the indicated region. The upper right figure shows the absorption for the same
system.
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Chapter 5

The FIR absorption of a confined and
modulated 2DEG

For parabolic quantum dots the dispersion relation, i.e. the energy of the absorption
peak as a function of the magnetic field B, is written as [33, 6]

1 1
hwy = \/(hw0)2 + (§hwc) + §hwc, (5.1)

where w, is the cyclotron frequency and wy is the confinement frequency. The confine-
ment of parabolic quantum dots is Veont = 3m*wg (z?+y?) and thus wy is a characteristic
excitation energy of the dot in zero magnetic field. The signs £ remind us that an ex-
ternal field, circular polarized in one direction (clockwise or counterclockwise), can
only excite either of these absorption lines, and in order to excite the other one the
polarization has to be reversed [8].

6

E [meV]

BITI]

Figure 5.1: The dispersion relation for parabolic dots for a confinement energy hwy =
1meV. For high magnetic field w, > wy and the lines go as wy oc B and w_ o< B~
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Although this model applies to circularly symmetric parabolic confinement, which is
not investigated here, it serves as a valuable tool to understand what kind of absorption
one would expect to see in a general confined electron system. Fig. 5.1 shows the two
dispersion lines for confinement energy fiwy = 1 meV. Even though the origin of these
absorption lines is complex, their asymptotic behaviour can be understood from a
simple classical orbit picture. Consider Fig. 5.2 which shows two different kinds of
orbits within a quantum dot of radius R. The orbit at the center of the dot represents
orbits where the electrons can move without encountering the dot boundary. The
frequency of the motion is w = w, o« B. The other orbit represents electrons whose
orbits intersect the boundary. Since the electrons are confined to the dot they cannot
complete the circular orbit and are reflected at the edges and thus travel around the
dot in a skipping orbit [34]. The frequency of this motion can be estimated noting that
these electrons feel both the magnetic field and the confinement. The drift velocity

Veonf
% ‘T:R' The

is vy = £/B where £ is the electric field at the edge of the dot, %a 5
resulting frequency of this motion is w = vg/R = wi/w. o« B~'. This simple picture
also demonstrates how different polarizations excite these two branches since they

essentially move in opposite directions.

s

Figure 5.2: A schematic of a quantum dot of radius R. It contains electrons whose
motion is unaffected by the edge, orbit at the center of dot. Furthermore electrons
close to the edge execute a skipping orbit where they are reflected at the boundary and
travel the circumference of the dot in a direction opposite to the cyclotron orbit.

5.1 Changing the size of X

Applying a magnetic field to a sample containing electrons (or any charged particle)
introduces a length scale in addition to those which previously determined the sample
properties. This length is the magnetic length, which is defined as

o= —. (5.2)



In order to consider the competing effects of the hard-wall confinement, i.e. the finite
size, and the magnetic field we change the size of the system by increasing the number
of unit cells, which are of constant size. In these calculations the size of the unit cell is
50 x 50 nm?. The modulation is given by eq. (3.9) where L, (L) is the side length and
M, (M,) is the number of unit cells in the = (y) direction. The size of the system is
thus M, x M, times the size of the unit cell. Keeping the z and y directions equivalent
the number of cells in each direction is the same, M, = M,. The type of modulation
is determined by the sign of V;, and if Vj = 0 the system is homogeneous within 3.

Before proceeding any further it is necessary to discuss the calculation implementa-
tion of egs. (4.23) and (4.26). These equations are exact, within the present formalism,
if the sum includes all possible transitions (the indices « and [ denote eigenstates
of the system) but only the transitions ‘around’ the chemical potential are important.
The approximation lies in how large we choose this energy interval around the chemical
potential. The basic rule of thumbs is that all states up to energy of at least p+ hwnax
should be included. The energy hwyay is the maximum excitation energy of the exter-
nal field applied to the system. Normally a somewhat larger interval is used to get a
correct depolarization shift of the highest energy transitions. A maximum excitation
energy of Awyaxy = 10meV is used in the following calculations.

In these calculations a modulation amplitude of V; = —5, 0 and +5meV are con-
sidered for system sizes corresponding to 1x1, 2x2, 3x3 and 4x4 unit cells. As the
system size increases so does the number of states per energy interval. This means
that for a fixed wya the number of states included in the calculations increases, and
increases rather rapidly, and so does the time needed to calculate the absorption. The
number of accessible states, i.e. how many states are included in the calculations, is
denoted by Npoy, and is given in the following table:

My x My, | Npoy,
1x1 10
2%2 15
3x3 30
4x4 45

An electron density of one particle per unit cell is used throughout, i.e. Ny = M, M,,
except in the 1x1 case where Ny, = 2. The temperature is 7' = 1 K and the wavevector
is along the diagonal of the system with a wavelength much larger than the system
size, i.e. kL < 1.

5.2 Results of the calculations
The absorption spectrum for the 1x1 system with modulation amplitude V5 = 0 meV
is shown in Fig. 5.3. The spectrum is dominated by two lines that converge as the

magnetic field goes to zero. Similar behaviour is well known for a single quantum
dot with parabolic confinement |7, 8]. The panel to the right shows the position of
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Figure 5.3: The power absorption as a function of energy E and B, to the left, and the
dispersion graph for the 1x1 system, Vj; = O meV.

the absorption peaks as a function of the magnetic field, so-called dispersion graph.
The symbol size indicates the oscillator strength at each point. The solid lines show
the dispersion relations of a parabolic quantum dot, see eq. (5.1), where the confining
energy hwy is assumed to coincide with the energy of the peak with highest oscillator
strength at B=0T.
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Figure 5.4: The energy spectrum as a function of magnetic field B for the 1x1 system
for modulation amplitude V5 = O0meV. The solid line shows the chemical potential.
The arrows show the 1—2 and 1—3 transitions.

The lower branch follows w_ very well but the upper branch starts to deviate from
w, as the magnetic field increases. The deviation is due to anti-crossing caused by
the square geometry, which induces quadrupole contribution in the absorption. This
behaviour is seen in both measurements and calculations [8, 10]. It can be understood
from the Darwin-Fock energy diagram in Fig. 5.4. The solid line denotes the chemical
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Figure 5.5: The ground state density, to the left, and a contour plot of the induced
density for the 1x1 system for V5 = 0 meV modulation at B =0T and F = 6.64 meV.
The arrow indicates the 50 nm length-scale.

potential. The square geometry splits states 4,5 and 6, which are degenerate in circular
symmetry [5], causing state 4 to be lowered in energy (to clarify this discussion the
arrows in Fig. 5.4 show the 1—2 and 1—3 transitions). As states 3 and 4 get closer, with
increasing magnetic field, their interaction gets stronger causing the 1—3 transition
branch to be pushed down from w;.

It is possible to interprete the absorption spectrum in terms of the ground state here
because the levels are few. As the levels get more dense, as happens for larger systems,
the depolarization shift makes this comparison very difficult. Because the lowest states
remain relatively unchanged except for an energy shift when the modulation is changed,
the absorption spectra remains almost identical for different modulations.

Parabolic, circularly confined dots are circularly symmetric. The electron density
of the square dot, with no modulation potential V5 = 0 meV, is shown in the panel
to the left in Fig. 5.5. Its structure has clear signs of the square confinement, i.e. the
contour lines are squares with rounded corners.

The induced density has a strong dipole motion, along the diagonal, about the
center which is evident in the contour plot in the panel to the right. The motion bears
strong resemblance with the center-of-mass motion which is characteristic of quantum
dots [2, 5|. The boundary limits the charge motion thus forming the triangular shape
of the contours.
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Figure 5.6: The energy spectrum as a function of magnetic field B for the 2x2 system
for modulation amplitudes, from left to right, V; = —5, 0 and +5meV. The solid line
shows the chemical potential.

By increasing the side lengths the energy levels become more dense. For the 2x2
system the screened potential amplitude is comparable to the level spacing and mod-
ulation effects are seen in the absorption spectra in Fig. 5.8. From top to bottom the
modulation amplitudes are V5 = —5, 0 and +5meV. For all modulations the square

'~'.'.~‘.~z~’:

'
R‘*\\

i
”,”,’,' i

11 '0

Figure 5.7: The densities for modulation amplitudes Vj = —5meV, to the left, and
Vo = 0meV for the 2x2 system.

splitting is seen as an anti-crossing around the w, mode. It is interesting how the
spectrum approaches a more ‘clean’ square dot spectrum as the modulation amplitude
is changed from Vy = —5meV to +5meV. The top panel in Fig. 5.8 shows a substantial
gap between the absorption branches at B = 0T which can be understood from the
Darwin-Fock diagram in Fig. 5.6. The first four states are lowered in energy for the
Vo = —5meV modulation, corresponding to four states localized around each of the
potential minima. This lowering happens to coincide with the square splitting so the
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—5, 0 and +5meV.

Figure 5.8: The power absorption as a function of energy E and B, left, and the

dispersion graph for a 2x2 system for modulation amplitudes, from top to bottom,

Vo
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Figure 5.9: The ground state density, to the left, and a contour plot of the induced
density for the 2x2 system for V; = +5 meV modulationat B =0T and F = 2.65 meV.
The arrow indicates the 50 nm length-scale.

gap due to the geometry is enhanced. The Vj = +5meV modulation tends to close
this gap, see bottom panel in Fig. 5.8.

The electron density, for zero modulation, has a four peak structure, the panel to
the right in Fig. 5.7. The electron repulsion causes the lowest energy configuration
to be one electron in each corner. Adding a V; = —5meV modulation amplifies this
structure, panel to the left, since the potential minima coincides with the Hartree
potential minima. The lowest branch in the top panel in Fig. 5.8 resembles the w_
branch of an antidot [4, 35]. In the case of the V; = —5meV modulation the density
has similar features as a single antidot, i.e. the density is lowered in the center of the
system.

The density for the V5 = +5meV modulation has a different structure since the
modulation maxima coincides with the Hartree potential minima. This smooths out
the density, giving a more single dot-like look, as is seen in the panel to the left in Fig.
5.9. The induced density shows a dipole motion along the diagonal but there is an
added modulation with wavelength of about 50 nm, as indicated by the arrow in the
panel to the right.
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The absorption spectra of the 3x3 system in Fig. 5.12 show the reduction of the
square splitting, i.e. the absence of strong branches above the upper one. The upper
branch is composed of many branches which all gain oscillator strength around the
region of the parabolic dot dispersion curve. Again the spectra show an evolution from
a more complex absorption for V; = —5meV modulation to a single dot-like behaviour
for V5 = +5meV modulation. The gap in the absorption spectra at B = 0T seen in
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Figure 5.10: The energy spectrum as a function of magnetic field B for the 3x3 system
for modulation amplitudes, from left to right, V; = —5, 0 and +5meV. The solid line
shows the chemical potential.
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Figure 5.11: The densities for modulation amplitudes V; = —5meV, to the left, and
Vo = 0meV for the 3x3 system.

the top panel can be understood, as before, because nine states get lowered in energy

corresponding to the 3x3 minima in the potential. The leftmost panel in Fig. 5.10
shows a gap at E ~ 4.7TmeV for B = 0T with 9 states below it. Due to the increased
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Figure 5.12: The power absorption as a function of energy F and B, left, and the
dispersion graph for a 3x3 system for modulation amplitudes, from top to bottom,
Vo = —5, 0 and +5meV.
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Figure 5.13: The ground state density, to the left, and a contour plot of the induced
density for the 3x3 system for 1 = +5 meV modulationat B =0T and £ = 1.75 meV.
The arrow indicates the 50 nm length-scale.

size the states are more dense than in Figs. 5.4 and 5.6 and the square splitting is not
as noticeable.

For V; = 0 meV the electron density is highest close to the edge because the Hartree
potential is lowest there, see the panel to the left in Fig. 5.11. This behaviour is easy
to understand in terms of electron-electron repulsion, i.e. by arranging themselves near
the boundary they can minimize the repulsion force. The V; = —5meV modulation
causes bumps in this structure around the potential minima. The induced density in
Fig. 5.13, for V5 = +5meV, still shows a strong dipole motion plus a charge motion
with wavelength comparable to the modulation wavelength.
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The Darwin-Fock diagram for the 4x4 system with V5 = —5meV modulation in
the panel to the left in Fig. 5.14 shows a gap above the first 16 states being lowered by
the potential. The size of the gap and the effects of the square confinement are reduced
due to the increased energy level density. The Vj = +5meV modulation closes the gap
and a new feature, not seen in the other systems, is the formation of Landau levels
for high magnetic fields. The panel to the right in Fig. 5.14 shows how the energy
levels condense at E ~ 5.6 meV and F ~ 8.7meV for B = 1.8 T, which is in agreement
with the Landau level separation of AE = 3.1meV for this magnetic field. The same
applies to the left panel where the first two Landau bands are situated at F ~ 2.3 meV
and F ~ 5.2meV for B = 1.7T, again in agreement with a Landau level separation of
AF = 2.9meV. The Landau bands correspond to bulk states and in between them are
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Figure 5.14: The energy spectrum as a function of magnetic field B for the 4x4 system
for modulation amplitudes Vy; = —5meV , to the left, and V; = +5meV. The solid line
shows the chemical potential.

edge states which get more sparse as the magnetic field, or system size increases. Note
that the chemical potential lies in the first Landau band.

The absorption branches for the V; = —5meV modulation in the upper panel in
Fig. 5.15 converge at B = 0T, and although the branches are somewhat scattered their
oscillator strength is greatest around w.. In the case of the V; = +5meV modulation,
seen in the lower panel, the absorption shows a still stronger tendency towards the
parabolic dot dispersion. The effects of the modulation on the induced density are
evident in the panel to the right in Fig. 5.16. The electron density has a definite
fingerprint from the modulation, i.e. density minimas around the potential maximas
and in between them the density has maximas.
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Figure 5.15: The power absorption as a function of energy F and B, to the left, and
the dispersion graph for the 4x4 system for modulation amplitudes V5 = —5, upper
panel, and Vy = +5meV.
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Chapter 6

Summary and discussion

When the dispersion graphs for the V5 = 4+5meV modulation are compared for all
the system sizes some interesting features emerge, as seen in Fig. 6.1. One of the
most striking is how the spectrum evolves from the simple two branch structure in the
1x1 system to the 4x4 one which again shows, in general, the same behaviour. It is
important to stress that although the absorption may be similar the ground states are
totally different and the origin of the two-branch behaviour is not the same in both
cases.

In order to clarify this evolution of the spectra it is instructive to first consider the
opposite ends, i.e. the 1x1 and 4x4 systems. The 1x1 system is strongly confined and
the energy level separation is large. Since there are only two electrons in the system
the absorption is dominated by the 1—2 and the 1—3 transition. The magnetic field
lifts the degeneracy of levels 2 and 3, see Fig. 5.4, and this splitting is the origin of the
two branch structure in the absorption.

The 4x4 system has a dense energy spectrum where the levels condense into Landau
bands at high magnetic fields. In order to explain the absorption in this case a very
different approach has to be used. As is seen in the Darwin-Fock diagram, see the
panel to the right in Fig. 5.14, Landau bands are formed and this indicates that the
the electrons ‘see’ a nearly infinite system. The finite width of the bands is due to the
modulation and the states in between the bands are edge states. Both these factors
contribute to making the two branch structure deviate slightly from the dispersion
relation in eq. (5.1).

The intermediate cases, especially the 2x2 system, indicate that there is an tran-
sition region from the strong confinement to the large system. In this region many
processes are competing, i.e. the finite size, the modulation and the magnetic field.
This is represented in the dispersion graph which is more complex than in the other
cases. Describing this behaviour on a microscopic level is not possible so this region
will not be discussed further here.

When the the 4x4 system is considered as a candidate for an infinite system one is
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tempted to apply, or at least discuss, Kohn’s theorem [36]. This theorem® states that
an infinite, homogeneous system in magnetic field can only be excited at a frequency
w = we. The theorem can be used to explain the absorption in the 4x4 for high
magnetic fields. The lower branch w_ is due to the edge states, as was discussed in
chapter 5. The system is not homogenous but there are many states, i.e. the states
which constitute the Landau bands, which do not experience the boundary of the
system. These states form the backbone of the w, -like absorption branch and encourage
the application of the theorem.

An experimental implementation of these calculations should be possible now or,
at least, in the near future. Making the modulation potential with wavelength of only
50nm may be difficult but it should be relatively easy to fabricate the zero modulation,
finite systems. To boost the signal-to-noise ratio of the transmission measurements
(experiments measure transmission, not absorption) an array of finite systems should
be made such that the distance between adjacent systems would be much larger than
the modulation amplitude or individual subsystem size.

!'Named after Walter Kohn who received the Nobel price in chemistry in 1998
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Appendix A

Matrix elements

The matrix elements in eq. (3.16) are defined as

Hm1n1,m2n2 = (Xm1n1a Hsznz)
(Xmlm: ||Xm2n2) + (erflla VmodX'mznz)
= Tmlm,mznz + lem,mznz- (A-l)

Using the kinetic operator in eq. (3.8) one can write the T matrix elements as

1 0? 0?
Tmlnl,mznz = ih('%{ (Xmﬂha_g |:a 2+ :|Xm2n2>
+ __y m 2
Xmlnp 2 8y X’m2n2
N 1 & N _@ i
Xminys 4@ x 9 Y 9 Xmana
_ ! o o (L) L oLy
= Qhwc{ (27) [mZ <2€c> + nj 20, OrmymsOnyns

(L) L,
+1 (L_> Iy (my, ma) Iy (n1, n) — (L_> 12(m1am2)11(n1’n2)]
y )

L, \? Ly
+ (2—€i> I3(m1’m2)6m"2+(2—£yc) 5m1m2]3(n1’n2)]}’

(A.2)
where the integrals I, I, and I3 are defined as
1
Li(my,ms) = 2/ du sin(mlwu)a—u sin(maymu)
0
_ (rzn?i%) (I = (=1)™*m2) my # my
0 otherwise
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! 1
Iy(my,mg) = 2/ du sin(mymu) (u— 5) sin(meomu)
0

—(ﬁ?:iffg)z (1= (=1)m™*™2) my #my
0 otherwise

1 1 2
I3(my,ms) = 2/ du sin(mymu) (u—§> sin(meomu)
0

{ s (L4 (=1)™4m2) - my # my

2
1 1 :
D) 1-— 71_2—777%) OtherWISe

The factors (1 £ (—1)™*™2) rarify the matrix, making the calculations less time con-
suming. This is a result of the gauge in eq. (3.5) being a odd function about the center
of the system.

The potential matrix elements are defined as

= (Xmlnl ’ Vmodeznz)

1 1 1 1
= ‘/0 |:§5m1m2 - _14(m1am2):| |:§6n1n2 - 514(77/1; n?) ) (A3)

le n1,M2n2

2

where the integral I, is defined as

1
Ii(my,ms) = 2/ du sin(mymu) cos(2M mu) sin(mamu)
0

|m1 — m2| =2M
% mi + Mo = 2M
0 otherwise

1
2
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Appendix B

The o — € relationship

By using the continuity equation, Poisson’s equation and generalized Ohm’s law we can
relate the conductivity tensor 6 and the dielectric function e. The generalized Ohm’s
law [23] plays the role of a constitutive equation connecting the current density J to
the total electric field E

I(r) = / &' (r, ¥ )E(r'). (B.1)

Other forms of constitutive equations may be used [23]. The Fourier transform of the
current density is written as

Jk) = / dPr" I (x")e~ "
1
- /dBr"d?’r'&(r",r') OE

1 1 ] / Te.p!!
= %/dqchq” {(27()2 /d3r//d3r16(r//’r/)ezq.r o iker }E(q)

1
— %/dqchq”&(k, a)(—iq)se(ay, 42),

/ dSqE(q)eiq-r’e—ik-r"

where E(q) = (—iq)¢s.(q) and 6(k,q) is the Fourier transform of the conductivity
tensor. For 2DEGs the tensor can be written as a 2x2 matrix which only depends on
the lateral variables

o(k,q) = 6(kll’ qll)’ (B.2)
where || subscript denotes the lateral subspace. The current density is thus
. N
309 = [ Patio,a)-ia)y- [ duocla.a) (®3)

The Fourier transform of the continuity equation is [37]

—iwpind(k, w) + 1k - J(k) = 0.
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Inserting eq. (B.3) into this equation and solving for the density one can write it as

—1 . 1
pina (k,w) = U/qu”k' 'U(knaqu)qn%/dquﬁsc(qn;%)- (B.4)
The Poisson equation, in CGS units, in the Fourier space is written as
k2¢ind(k) = 47 Ping (k)

This equation relates the induced field ¢inq to the total field ¢ through eq. (B.4).
Performing the inverse Fourier transform in the ¢, variable one gets

1 1k,z
bina(ky,2) = %/dkz¢ind(kl|,kz)ekz

1 A7 pina(k)
=L [ g Arpima(K)

2T k2
npralie) s [k
— ﬂ-pind 1) R
2m k2 + k2
2mi X 1 .
= —m d*q k, -G(kllaqll)q”%/dqz(ﬁsc(q”’qz)e D

Since we are interested in the 2DEG, i.e. z = 0, this equation becomes
271

bina(ky, 0) = _m d2q||k|| -6 (ky, ay)q ésc(ay, 0), (B.5)

where the integral over g, was interpreted as the inverse Fourier transform for z = 0.
The principle of superposition relates the external, induced and total field

(bsc = (bext + ¢ind

and using eq. (4.35) one can write this equation as

Qsext (k||, 0) = ¢Sc(k\l’ O) - ¢ind(kll’ 0) .
= /d2q|| {5(kn —qy) + %kn : 6(k|,q||)q||} bsc(ay; 0)
I

= /d2q”€(k”,q”)(zﬁsc(q”,())

yielding the relation

ek, q) =d(k —q) + %kn -o(ky, qy)qy- (B.6)

Note that this equation was derived using fundamental relations, except for the consti-
tutive equation. The constant field, 3D version of this equation is the familiar equation
[30]

4

=14+ —0. B.7
€ +w0 (B.7)
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