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Abstract

We introduce a microscopic theory and a simulation method for time-dependent
quantum transport through a finite size sample with interacting electrons con-
nected to leads with non-interacting electrons via time-dependent coupling in
an external magnetic field. The model is built on the Quantum General Mas-
ter Equation (QGME) formalism that is used to investigate the time dependent
current and the total many-electron charge distribution. We investigate interwire
forward and backward scattering phenomena for a coupling element between the
wires in a double wire sample. We observe that the electron-electron interaction
delocalizes localized states in the system enhancing the electron transport.
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Chapter 1
Introduction

1.1 Background Information

In the last three decades, the investigation of quantum transport in nanostructured
semiconductors has been developed for various scientific reasons. The starting
point to study semiconductor nanostructure was in the mid 1980s, when the size
of physical structures had decreased towards the nanoscale. At that limit the
quantum mechanical phenomena such as the discretization of energy levels be-
comes observable. When the electronic states are quantized, the electron-electron
interactions is important. Finite nanostructures involve only few particles, whose
interactions cannot be described by effective potentials, due to strong particle
correlations. The single-particle picture most of the time breaks down and a full
many-body method has to be used.

Many theoretical formalisms have been used to investigate time-dependent
transport in nanoscale regime such as transfer Hamiltonian formalism [1], path
integral technics [2], evolution operator method [3; 4], density functional the-
ory (DFT) [5], Keldysh nonequilibrium Green function (NEGF) methods [6] and
quantum master equations [7].

Our formalism here is the Quantum General Master Equation (QGME). Sev-
eral approaches were introduced based on the master equation to study the time-
dependent transport such as T-matrix formalism [8], time-convolutionless for-
malism [9], and super-operator formalism [10]. We use the super-operator for-
malism, which can be implemented either in the Markovian or without the Marko-
vian approximation, [11–15].

Different approaches have been proposed based on the quantum master equa-
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2 INTRODUCTION 1.2

tion (QME) to study interaction effects in transport [16–18]. We use quan-
tum general master equation without Markovian approximation to investigate the
time-dependent transport properties including the electron-electron Coulomb in-
teraction and on external perpendicular magnetic field in an open quantum sys-
tem.

This formalism allows us to explore quantum interference features of the dy-
namical transient current. Quantum interference phenomena are important in a
nanoscale electronic device. There are several systems developed for such stud-
ies, that may consist of parallel quantum dots [19], coupled quantum wires [20],
side-coupled quantum dots [21; 22], two-path interferometers [23; 24], and Rashba
double dots in a ring [25]. These coupled nanoscale systems have developed re-
cent interest due to their potential applications as electronic spectroscopy tools [26],
and in quantum information processing [27].

In this thesis, we will show how the magnetic field and the electron-electron
(e-e) interaction affects the quantum transport and the interference features be-
tween the parallel quantum wires through a single or a double coupling window
(we will define it in section 3.2) with a time-dependent coupling to the leads.

This thesis includes three more chapters in addition to this introduction chap-
ter 1. In chapter 2, the main theoretical approaches and the formalism are in-
troduced. We will show single and many electron models for describing the
Hamiltonians of the three disconnected subsystems and the time-dependent con-
tact Hamiltonians. Chapter 3 shows the main simulation results in this work.
The conclusion and summary is included in the chapter 4.

1.2 Fabrication of lateral double quantum wires

Nano-scale device can be made to contain a layer of a high mobility two-dimensional
electron gas (2DEG). It has been essential in investigating quantum transport be-
cause the Fermi-wavelength and the elastic scattering length can be larger than
the dimensions of the device in the quantum regime.

The fabrication technic of double quantum wire can be divided into two main
steps.

• Construction of a 2DEG in a semiconductor heterostructure.

• The dimensionality of the electron gas can be further reduced by several
different micro and nano processing methods.

First Step There are many methods of fabricating a 2DEG in semiconductor
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nanostructures such as Molecular Beam Epitaxy-growth (MBE), Cleaved-edge
overgrowth, Catalytic growth of nanowires and AFM lithography.

In MBE-growth the 2DEG can be fabricated at the interface between the
GaAs substrate semiconductor and AlxGa1−xAs insulator layer (x is a fractional
number which determines the concentration of Al) as seen in Fig. 1.1(a). The
growth of an n-doped layer either as a single or a mixed AlxGa1−xAs layer pro-
vides electrons into the system. The second undoped AlGaAs layer interfaces
with the GaAs cap, limiting the oxidation of AlGaAs.

Figure 1.1: Schematic diagram of a GaAs/AlGaAs heterostructure (a). Conduc-
tion band energy diagram (b), 2DEG appears at the GaAs/AlGaAs interface.

In Fig. 1.1(b), the conduction band structure of the heterostructure is shown.
It is clear that the band off-set of GaAs is smaller than that of AlxGa1−xAs, but
the two crystals have the same lattice structure.

The n-doped layer supplies the electrons into the GaAs layer. A triangular
‘quantum well’ is produced in the conduction band on the GaAs side. A thin
layer of electrons is produced with low resistivity and high mobility the so-called
2DEG . The electrons can move freely parallel to the interface since the GaAs
layer is undoped, but they are confined to the triangular well.

Second Step In the 2DEG a quantum wire can be fabricated by using neg-
ative gate voltage above the 2DEG. Two isolated conduction channels can be
fabricated by a more complicated gate strip structure.





Chapter 2
Model and Theory

In this chapter we will take a tour of the theoretical part of time dependent trans-
port through an open system. We introduce and explain various concepts and
terms that will be referred to frequently in this thesis.

We begin with an overview of a single electron model in general, before intro-
ducing the methodology to describe the many-electron system. We will focus our
concern on time evolution, and illustrate concepts such as the Quantum General
Master Equation (QGME) formalism, for both non-interacting and interacting
systems.

2.1 Quantum Transport

Our model that we investigate is an open quantum system composed of a meso-
scopic sample connected to two electron reservoirs (leads) at the time moment
t = t0 via the contact region, but disconnected at earlier times. Our concern in
this work is the time evolution of the open quantum system after t > t0. The

Figure 2.1: Schematic representation of an open quantum system.

composite system consists of the left lead, right lead, and the sample in between,

5



6 MODEL AND THEORY 2.1

which is shown in Fig. 2.1.
Electrons will be transferred from the leads into the sample via the contact

regions (transfer regions) which are time dependent.

2.1.1 Single Electron Model

We will assume the system to be occupied by two-dimensional electrons that are
hard-wall confined in the x-direction at x =±Lx/2 with Lx being the length of the
sample and parabolically confined in the y-direction. The total Hamiltonian for
the system consisting of the central system, leads, and a transfer Hamiltonian can
be written as

hSystem(t) = hSample +hLeads +hTransfer(t). (2.1)

The first term describes the central system (sample), and the second term includes
both left and right leads

hLeads = ∑
l=L,R

hl, (2.2)

where hl is the Hamiltonian of the disconnected leads with l referring to the left
(L) and right (R) leads. hTransfer(t) is time-dependent transfer Hamiltonian.

Central System (closed system for t < t0)

The sample under investigation is composed of a laterally parallel double
quantum wire, the time independent Hamiltonian is

hSample = hS +VDW. (2.3)

hS includes both the kinetic part and confining potential Vconf(x,y) = Vh(x) +
Vp(y). Vh(x) denotes a hard-wall confining potential, Vp(y) is the parabolic con-
finement, and VDW is the potential describing the double quantum wire. If we
apply a homogeneous magnetic field ~B = Bẑ, choosing the vector potential in the
Landau gauge ~A =−Byx̂, then the Hamiltonian is

hS =
p2

x

2m∗
+

p2
y

2m∗
+

1
2

m∗Ω2
wy2 +ωcypx, (2.4)

here m∗ is the effective mass of electrons in the GaAs, and Ω2
w = Ω2

0 + ω2
c is

the effective cyclotron frequency, where Ω0 denotes strength of the confinement
potential, and ωc = eB/m∗ is the cyclotron frequency.
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The eigenvalue equation for a single-electron in a disconnected sample in a
magnetic field is[

p2
x

2m∗
+

p2
y

2m∗
+

1
2

m∗Ω2
wy2 +ωcypx

]
ψn(x,y) = Enψn(x,y), (2.5)

En are the eigenvalues of the central system and the index n refers to the quantum
numbers (nS

x ,n
S
y ). The boundary condition of the wave functions (a) ψS

n (−Lx
2 ,y)

= ψS
n (Lx

2 ,y) = 0 and (b) ψS
n (x,y→±∞) = 0, and Eq. (2.5) show us that the wave

functions in general are not separable, but we can use an expansion in order to
form the general solution

Ψ
S
n = ∑

nx,ny

Cny
nx ϕnx(x)φny(y). (2.6)

Where ϕnx(x) and φny(y) are complete basis wave functions with

ϕnx(x) =



√
2
Lx

cos
(

nxπx
Lx

)
nx = 1,3,5, ...,

√
2
Lx

sin
(

nxπx
Lx

)
nx = 2,4,6, ...,

(2.7)

and

φny(y) =
exp
(
− y2

2a2
w

)
√

2nyny!
√

πaw

Hny(
y

aw
). (2.8)

Hny denotes the Hermit polynomial of order ny and aw =
√

h̄/m∗Ωw is an ef-
fective magnetic length. Using the basis wave functions to calculate the matrix
elements of the Hamiltonian Eq. (2.4) the matrix elements of the non-perturbed
Hamiltonian are

〈n′|hS|n〉= δnxn′xδnyn′y h̄Ωw Ξ
0
nx,n′y

+ h̄ωc i awInx,n′x Ξ
B
n′y,ny

, (2.9)

where,

Ξ
0
nx,n′y

=

[
1
2

(
nxπaw

Lx

)2

+
(

n′y +
1
2

)]
,

Ξ
B
n′y,ny

=

√n
′
y

2
δny,n′y−1 +

√
n′y +1

2
δny,n′y+1

 ,
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and

Inx,n′x =


4nxn′x

(n2
x−n′2x )Lx

sin
(

n′xπ

2

)
cos
(nxπ

2

)
, if nx = even, n′x = odd,

4nxn′x
(n2

x−n′2x )Lx
sin
(nxπ

2

)
cos
(

n′xπ

2

)
, if nx = odd, n′x = even.

The matrix element give the discrete eigenvalues of the sample with no embed-
ded potential. The magnetic field in general can spread the eigenvalues or group
them together. For derivation of further matrix elements see the appendix (A.1).

The Leads

We assume that the left and right leads are semi-infinite wires having the
same y-confinement as the sample. The Hamiltonian of the leads can be written
as

hl =
p2

x

2m∗
+

p2
y

2m∗
+

1
2

m∗Ω2
wy2 +ωcypx, (2.10)

but there is a different boundary condition here to solve the Schrödinger equation
due to the range of the leads. The Schrödinger equation of a lead can be expressed
in the following form(

p2
x

2m∗
+

p2
y

2m∗
+

1
2

m∗Ω2
wy2 +ωcypx

)
ψ

l
q(x,y) = Eqψ

l
q(x,y), (2.11)

where Eq are the eigenvalues of a lead with a quantum number q which denotes
the continuous wave vector q and the subband index nl

y. We use a simplified
expression for the summation and integration

∫
dq ≡ ∑ny

∫
dq. The boundary

conditions are; (a) ψL
q (−Lx

2 ,y) = 0 and (b) ψL
q (x,y→±∞) = 0 for the left lead,

and (a) ψR
q (Lx

2 ,y) = 0 and (b) ψR
q (x,y→±∞) = 0 for the right lead. Eq. (2.11)

can not be solved using a separation of variables method, so we have to expand
the wavefunctions as

ψ
l
q(x,y) =

∫
dp Cny,n′y(q, p)ϕ l

p(x)φ
l
n′y

(y), (2.12)

herein,

ϕ
l
p(x) =

1√
2π

sin
(

p
(

x+
Lx

2

))
, (2.13)
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and

φ
l
n′y

(y) =
exp
(
− y2

2a2
w

)
√

2n′yn′y!
√

πaw

Hn′y

(
y

aw

)
. (2.14)

Hn′y is the Hermit polynomial of order n′y. Using the basis wave functions the
matrix elements of a lead Hamiltonian in a magnetic field give us (see appendix
A.2)

∑
n′y

[
δny,n′yϒ

0
q′,n′y
− h̄ωcaw

4
q ϒ

B
ny,n′y

]
Cn′y,my(q, p) = Ep,myC

ny,my(q, p). (2.15)

where

ϒ
0
q′,n′y

= h̄Ωw

[
1
2
(
awq′

)2 +
(

n′y +
1
2

)]
,

and

ϒ
B
ny,n′y

=

√
n
′
y

2
δny,n′y−1 +

√
n′y +1

2
δny,n′y+1.

The matrix elements look similar to the corresponding one for the finite wire
(sample), except for the finite wire we ended up with a discrete eigenvalue prob-
lem, but here we have a continuous one represented by a homogeneous integral
equation of the eigenvalue type.

Transfer Hamiltonian

In our system we have two time-dependent transfer Hamiltonians which make
a connection between the sample and the left lead (hL

T ), and the sample and the
right lead (hR

T ), so we can write the transfer Hamiltonian as hT (t) = hL
T (t)+hR

T (t).
We start from a well-known single-particle transfer Hamiltonian in the spectral
representation [28]

hl
T (t) = ∑

n

∫
dq χ

l(t)
(

T l
qn|ψS

n 〉〈ψ l
q|+h.c.

)
. (2.16)

The coupling between eigenstates of the sample ψS
n and the leads ψ l

q is described
by the coefficients T l

qn in the contacts. We express the time dependent coupling
of the lead l by the switching-on function

χ
l(t) = θ(t− t0)

[
1− 2

eγ(t−t0) +1

]
, (2.17)



10 MODEL AND THEORY 2.1

where we have χL(t) = χR(t) for t > t0. The coupling between the central sample
and the leads is switched on at t = t0 and the parameter γ tells us the switching
rate of the coupling. The coupling coefficients are defined as

T l
qn =

∫
drdr′ψ l

q(r
′)∗gl

qn(r,r
′)ψS

n (r). (2.18)

The transfer of electrons between the single-electron states (SES) of the system
|n〉 and the leads |q〉 depends on the amplitude of the wave functions of the sample
and the leads in the contact area. The nonlocal coupling function gl

qn is given by

gl
qn(r,r

′) = gl
0 exp

[
−δ

l
x(x− x′)2−δ

l
y(y− y′)2

]
×exp

(
−|En− ε

l(q)|/∆E

)
. (2.19)

gl
0 is the strength of the coupling, and ∆E is a constant value. We have defined

the energy interval [µR−∆,µL +∆] to determine the active window that includes
all the possible states in the central sample that may contribute to the transport.
Basically all states below the active window are considered fully occupied and
above it all states are empty, in addition there are no states below the active win-
dow in all our calculations. µL and µR are the chemical potential of the left and
right lead respectively .
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2.1.2 Many-Electron States And Coulomb Interaction

In order to include interaction between the electrons we resort here to a many
electron formalism. The state of the system in Fock space is defined by a se-
quence of occupation numbers of the single particle states. The Many-Electron
States (MES) are constructed from non-interacting SESs.

We denote non-interacting many-electron states of the isolated sample by |ν〉.
Note that only those SESs participate to transport that are located in the relevant
active window [µR−∆,µL +∆]. Fig. 2.2 shows the possible states in the relevant
active window.

Figure 2.2: Schematic energy states of the system.

The single electron states in the active window are NSES, so the many electron
state are NMES = 2NSES . In the occupation representation basis, the non-interacting
MES can be written as

|ν〉= |iν1 , iν2 , . . . , iνn , . . . , iνNSES
〉. (2.20)

In our system we have fermions (electrons) so the occupation of the n-th SES of
the isolated sample is iνn = 0,1, empty state (iνn = 0), or occupied (iνn = 1).
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In the many-electron description the Hamiltonian of the system will be pre-
sented as

H(t) = HSample +HLeads +HTransfer(t), (2.21)

where the Hamiltonian of the central system is defined by

HSample = H0
S +HI

S. (2.22)

H0
S is the kinetic term and HI

S is the Coulomb interaction term. The many-electron
Hamiltonian of the leads consists of HLeads = ∑l=L,R Hl , and the time-dependent
transfer Hamiltonian is HTransfer(t). We use capital letters here in order to distin-
guish from the single-electron form.

Hamiltonian of the central system

The electron-electron interaction plays a major role. According to the general
rules of second quantization [29] and using the Fermi properties of the state vec-
tors from Eq. (B.1) - Eq. (B.3) the kinetic term in the Hamiltonian is transformed
into

H0
S = ∑

n
End†

ndn, (2.23)

herein, En are the discrete single-electron energies, and d†
n (dn) have been intro-

duced as the electron creation (annihilation) operators in the central system. We
include the electron-electron Coulomb interaction in the central sample. Using
the second quantization the Coulomb interaction is given by

HI
S =

1
2 ∑

n,m
∑

n′,m′
Vn,m;n′,m′d†

nd†
mdm′dn′ . (2.24)

The two-electron matrix elements are

Vn,m;n′,m′ = 〈nm|V |n′m′〉=
∫

drdr′ψS
n (r)∗ψS

m(r′)∗V (r− r′)ψS
n′(r
′)ψS

m′(r),
(2.25)

where ψS
i (r) are the single-electron wavefunctions of the sample. The Coulomb

kernel is

V (r− r′) =
e2

4πε0εr

1√
(x− x′)2 +(y− y′)2 +η2

, (2.26)

with the relative dielectric constant of the material εr, and η an infinitesimal con-
vergence parameter. The MES Hamiltonian of the central sample Eq. (2.22) is
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transformed to the following form

HSample = ∑
n

End†
ndn +

1
2 ∑

n,m
∑

n′,m′
Vn,m;n′,m′d†

nd†
mdm′dn′ . (2.27)

The Coulomb interacting MES of the isolated central system are derived with
the exact diagonalization method [30]. The energy corresponding to the non-
interacting MES is denoted by E 0

ν ′ν = ∑n Eniνn which is the sum of the occupied
single-electron states.

Hamiltonian of a lead

We introduce the electron creation c†
q and annihilation operators cq of a lead

associated to the respective SES. The many-electron Hamiltonian of a lead can
be expressed in the following form

HLeads = ∑
l=L,R

∫
dqε

l(q)cl
q

†
cl

q. (2.28)

ε l(q) is the energy spectrum of a lead. Note that the e-e interaction in the leads
is neglected.

Transfer Hamiltonian

In the previous discussion we have introduced the transfer Hamiltonian in
the SES basis. Now in the MES basis, using the creation d†

n and annihilation dn

operators of the central sample, and the creation cl
q

† and annihilation cl
q operators

of a lead, the time-dependent transfer Hamiltonain in the third term of Eq. (2.21)
is expressed as

HTransfer(t) = ∑
l=L,R

χ
l(t)∑

n

∫
dq
[
cl

q
†
T l

qndn +d†
n(T l

nq)
∗cl

q

]
. (2.29)

The first term can be explained as a creation of an electron in the lead and the an-
nihilation of an electron in the sample. The second term gives us the annihilation
of an electron in a lead and a creation of an electron in the sample i.e. an electron
is transferred from the lead l to the sample.
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2.2 Quantum General Master Equation Formalism

In this section we will discuss the dynamics of open systems (S) under the influ-
ence of the reservoirs (R), or the leads (l). The dynamical behavior of a system
can generally be described by the so-called Quantum Generalized Master Equa-
tion. Master equations were first introduced by Pauli [31] in quantum statistical
mechanics. He assumed that the expansion coefficient of the wavefunction have
random phases at all times. This gives a dynamical behavior in terms of occu-
pation numbers of the wavefunction. Later Nakajima in 1958 [32] and Zwanzig
in 1960 [33] independently proved that this assumption of continuously random
phase is unnecessary.

Our starting point is the equation of motion for the full density operator. For
the composite system S⊕R, the time evolution of the density operator for the
whole (full) system is described by the Liouville-von Neumann (quantum Liou-
ville) equation [34]

dρ(t)
dt

=− i
h̄

[H(t),ρ(t)] . (2.30)

ρ(t) is the full density operator. Our approach to derive an equation of motion for
the reduced density matrix ρS of the central system is the super-operator method
in line with the Nakajima-Zwanzig method. In this method the full density oper-
ator is projected into two parts as

ρ(t) = Pρ(t)+Qρ(t), (2.31)

where the first term is said to be the relevant and the second term is the irrelevant
part of the density ρ of the full system. The aim here is to derive the equation
of motion for the relevant part Pρ(t). We define the super-operator as P =
ρlTrLeads and the complementary super-operator Q = 1−P . We wish to find the
reduced density operator (RDO) of the central system ρS, that can be obtained by
taking the trace over the Fock space of the leads

ρS(t) = TrLeads(Pρ(t)), (2.32)

with the initial conditions ρ(t < t0) = ρLρRρ0
S , where ρ0

S is the density operator
of the isolated sample at (t < t0). At that time we can assume that the sample is
unoccupied

ρ
0
S = |ν0〉〈ν0|, |ν0〉= |0,0, . . . , iνNSES

= 0, . . .〉, (2.33)
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we also assume that at t < t0 the leads are in thermal equilibrium, so the density
matrix for the leads ρl is then given by

ρl =
e−β (Hl−µlNl)

Trl{e−β (Hl−µlNl)}
. (2.34)

µl is the chemical potential of the lead and Nl denotes the number operator of the
lead l. The chemical potential gives us the distribution of electrons in the leads.
Using the initial conditions we end up with the following non-interacting QGME
for the RDO

dρS(t)
dt

=− i
h̄

[
HSample,ρS(t)

]
− 1

h̄2 ∑
l=L,R

χ
l(t)

∫
dq
([

T l(q),Ωl
q(t)
]
+h.c.

)
,

(2.35)
an integro-differential equation. The kernel of the equation is approximated in
HT up to second order

Ω
l
q(t) = U†

S (t)
∫ t

t0
dt ′ χ l(t ′)Πl

q(t
′)× e(−

i
h̄ (t−t ′)ε l(q))US(t),

and

Π
l
q(t ′)=US(t ′)

[(
T l(q)

)†
ρS(t ′)

(
1− f l (ε(q))

)
−ρS(t ′)

(
T l(q)

)†
f l (ε(q))

]
U†

S (t ′).

US(t) = eiHSamplet/h̄ denotes the time evolution operator of the closed central sys-
tem and f l (ε(q)) is the Fermi distribution in the lead l before coupling. To see
the details of the derivation please refere to appendix (C).

We use the exact diagonalization method to supply a new interacting MES
basis |µ) including all sectors in Fock space containing from 0 to NSES electrons.
The many-electron basis are connected by a unitary transformation

|µ) = ∑
ν

Uµν |ν〉, (2.36)

with the transformation matrix Uµν . Given the unitary transformation one can
transform the equation for the non-interacting RDO into the equation for inter-
acting RDO. The non-interacting many-electron coupling matrix is transformed
to the interacting case T̃ l(q) = U †T l(q)U . Expressing the interacting many-
electron coupling matrix T̃ in the interacting MES

T̃ l(q) = ∑
µ,µ ′

T̃ l
µµ ′(q)|µ)(µ

′|, (2.37)
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with T̃ l
µµ ′(q) = ∑n T l

nq(µ|d†
n |µ ′) in terms of the single-electron coupling matrix

T l
nq.

Substituting the diagonalized matrix representation of the interacting HSample
allows us to obtain the RDO in the interacting MES basis ρ̃S = U †ρSU . The
QGME is transformed to

dρ̃S(t)
dt

=− i
h̄

[
H̃Sample, ρ̃S(t)

]
− 1

h̄2 ∑
l=L,R

χ
l(t)

∫
dq
([

T̃ l(q),Ω̃l
q(t)
]
+h.c.

)
,

(2.38)
where the kernel is constructed from

Ω̃
l
q(t) = U†

S (t)
∫ t

t0
dt ′ χ l(t ′)Π̃l

q(t
′)× e(−

i
h̄ (t−t ′)ε l(q))US(t),

with

Π̃
l
q(t
′) = US(t ′)

[(
T̃ l
)†

ρ̃S(t ′)
[
1− f l (ε(q))

]
− ρ̃S(t ′)

(
T̃ l
)†

f l (ε(q))
]

U†
S (t ′).

Eq. (2.38) is the main equation of this work. The first term gives the evolution
of the disconnected but interacting sample. The second term allows for charging
and discharging processes. Electrons in a given state of the sample n are allowed
to transfer out in a state q of the lead at a specific time and transfer back in a
different state at the same time or different time. We should note the reduced
density operator is nonlocal in time pointing to non-Markovian memory effects.

2.3 Physical Measurable Quantities

The RDO allows us to compute physical quantities such as time evolution of the
charge, many-electron charge distribution and the net current. Note that all these
quantities defined below will be in the interacting MES basis.

Evolution of the charge density

The charge operator is described as

Q̂S = e∑
n

d†
ndn. (2.39)

The statistical time evolution of the charge operator is

〈Q̂S(t)〉= Tr{ρ̃(t)Q̂S}, (2.40)
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with the trace over the Fock space Tr = TrSTrLeads. Using ρS(t) = TrLeads ρ(t),
and convert the RDO ρS(t) from noninteracting MES basis to the interacting
MES basis, the average charge evolution becomes

〈Q̂S(t)〉= TrS{ρ̃S(t)Q̂S}
= e∑

n
∑
µ

(µ|ρ̃S(t) d†
ndn|µ). (2.41)

It is clear that the time-dependent charge is related to the diagonal elements of
the RDO.

Net current

Having the time evolution of the mean value of the charge operator one can
introduce the time-dependent net current from the left to right leads through the
sample, so-called net charge current

IQ(t) =
d〈Q̂S(t)〉

dt
= IL(t)− IR(t) = e∑

n
∑
µµ ′

dρ̃S;µµ ′

dt
(µ
′|d†

ndn|µ). (2.42)

Charging processes occur if electrons flow from the left or the right lead towards
the sample and we have discharging processes if the electrons flow from the sam-
ple towards the left or the right lead.
We see the net current depends on the time derivation of the reduced density
matrix. One can write,

dρ̃S;µµ ′

dt
=−χ l(t)

h̄2

∫
dq
(

µ

∣∣∣([T̃ l(q),Ω̃l
q(t)
]
+h.c.

)∣∣∣µ ′) . (2.43)

we should note that the first term vanished since it is a trace of a commutator.

Electron charge distribution

The last interesting physical parameter to calculate in our work is the many
electron charge distribution. One can explicity write

Q(r, t) = e ∑
n′,n

ψ
∗
n′(r)ψn(r) ∑

µ,µ ′
ρ̃S;µµ ′(t)(µ|d†

n′dn|µ ′). (2.44)

The many electron charge distribution depends both on space and time.





Chapter 3
Results And Simulation

In this chapter we will show the main results we have obtained in this work. We
will focus on the time-dependent transport properties and the quantum interfer-
ence behavior between the parallel wires in the case when they have a coupling
element between them.
Since electrons in a nanostructure are generally sensitive to magnetic field, we
are using a natural length scale of the system, the effective magnetic length aw to
characterize the x and y axis. The influence of the magnetic field on the effective
magnetic length is determined by the following

aw =
(

h̄
m∗Ω0

)1/2( 1
1+(eB/(m∗Ω0))2

)1/4

=
33.74

4
√

1+2.982[B(T)]2
nm. (3.1)

The electron effective mass m∗ = 0.067me for a GaAs semiconductor which we
have assumed the wires are made of. It is clear that the effective magnetic length
is proportional to the inverse square root of the magnetic field in the case of large
field.

In addition, we should write the main physical parameters that we use in all
simulations as constant values independent of the magnetic field.

• To control a thermal motion of electron in our system, the temperature
T = 0.5K is used.

• The states of the central system within the bias are completely unoccupied
before switching-on the coupling.

19
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• The confinement potential of the central system and the leads are equivalent
to the confinement frequency h̄Ω0 = h̄Ωl = 1.0 meV, which is shown in
Fig. 2.1.

• The coupling parameter which controls the transport is the nonlocal cou-
pling strength Γl = 4gl

0a3/2
w /(δ l

xδ l
y)

1/2 determining the strength of the cou-
pling between the central sample and the leads. In all calculations the con-
tact size parameters are δ l

x = δ l
y = 4.4×10−4 nm−2 and gl

0a3/2
w = 60 meV

such that the coupling strength Γl = 54.5 meV·nm2. Using these param-
eters one can determine the effective lengths of the system-lead coupling
potential which are Ll

c,x = Ll
c,y ≈ 95 nm. Fig. 3.1 shows the nonlocal cou-

pling function Eq. (2.19) in the contact regions.

Figure 3.1: (Color online) Schematic representation of the strength coupling in
the contact regions for B = 0 T. gl

0a3/2
w = 60 meV, δ l

x = δ l
y = 4.4×10−4 nm−2,

and aw = 33.42 nm.

3.1 Parallel double wire system

We start with parallel laterally double quantum wires of length Lx, which are
separated by the barrier potential, and the electrons of both wires are in tunneling
contact through the central barrier. The potential has this form

VMB(y) = VB e(−β 2(y−y0)2). (3.2)
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In Fig. 3.2 the double wire system is demonstrated, where the constant parame-
ters have the following values

VB = 18 meV β = 0.3 nm−1, y0 = 0 aw.

Figure 3.2: (Color online) Schematic representation of the potentail defining the
parallel double wire system. B = 0 T, Lx = 300 nm, and h̄Ω0 = 1.0 meV.

We assume that the chemical potentials µL = 1.65 meV and µR = 0.75 meV
are fixed. This provides a constant bias window µL− µR = −eVbias = 0.9 meV.
The extention parameter (∆ = 0.3 meV) which is the extended bias window to
give the window of relevant states ∆µ +2∆ = 1.5 meV

We consider five single-electron states in the relevant bias window and dis-
tributed as follows: three states are located in the active bias window [µL,µR],
two other states are located in the top extended bias window [µL,µL + ∆]. One
subband in the leads is located in the relevant bias window (not shown).

The time-dependent current for the double nanowires is calculated. It is pre-
sented in Fig. 3.3, where IL,0 is the noninteracting current flowing from the left
lead into the central system, IR,0 is the noninteracting current flowing from the
sample to the right lead, the noninteracting net current IQ,0, and the interacting
net current IQ,I , where the net current IQ = IL− IR.

We present here the total left and right current to see how the current tunnels
from both leads into or out of the sample. When we switch-on the coupling at
t = t0, the left current is increasing with time up to t = 35 ps with having rapid
oscillation, while the right current has a small fluctuation at the beginning. Later
on, both the left and right current are approaching to the steady states with small
oscillations.

Now we look at the net current for the noninteracting and interacting system,
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both of them are increasing with time and almost having the same value up to
t = 30 ps. Then the net current is exponentially decreasing with time at time
t = 140 ps the difference between noninteracting and interacting current becomes
0.1 nA (The Coulomb correlation ∼ 10%).

Figure 3.3: The noninteracting and interacting net current versus time for B =
0.5 T.

To see the behavior of the charge motion, we will show the many-electron
charge distribution in the central system. Fig. 3.4 displays the noninteracting
(left panel) and interacting (right panel) many-electron charge distribution for
four selected moment of time during the transient current. At time t = 10 ps,
it indicates a motion of electrons from the left side to the right side, while for
t = 20 ps the charge density is moving from the right side to the left side of the
central sample, i.e. at short time regime we have oscillations in the charge motion
in accordance with the oscillation behavior in the current. Note that the Coulomb
interaction does not have a great influence on the charge motion at this initial.

Later on, at time t = 120 ps the many-electron charge motion has small os-
cillations and the Coulomb interaction enhances the current that is clearly carried
by both wires. The central system is approaching to the steady state at t = 220 ps
and the Coulomb interaction continues to it’s enhancement of the current.
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Figure 3.4: (Color online) The many-electron charge density for the noninteract-
ing (left panel) and the interacting system (right panel). B = 0.5 T, Lx = 300 nm.
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3.2 Double wire with a single coupling-window

The geometrical shape of the sample is designed as a lateral double nanowire of
length Lx. The electron systems of both wires are in tunneling contact through
the central barrier and the contacts. To further observe interference phenomena
and interwires transfers, we put coupling elements in the barrier between the
nanowires. The coupling elements are windows in the potential barrier separating
the wires. The wires have the same confinement potential and the same length.
The potential defining the double wire (DW) subsystem with a coupling element
is described by

VDW(r) = VMB(y)+VCW(x,y), (3.3)

where VMB is the middle barrier potential which separates the quantum wires and
VCW is the potential of the coupling window, a Gaussian potential has been chosen
in both cases

VMB(y) = VB e(−β 2(y−y0)2), (3.4)

VCW(x,y) =−VW e(−β 2
x (x−x1)2−β 2

y (y−y1)2). (3.5)

Where VB and VW are the respective potential strengths. (xi, yi) are the center
coordinates of the window between the wires, β , βx and βy determine the range
of the potential.

Figure 3.5: (Color online) Schematic representation of the potential defining the
window-coupled DW system. 3D plot (left panel) and contour plot (right panel).
B = 0 T, Lx = 300 nm, Lw = 100 nm, and h̄Ω0 = 1.0 meV.

Fig. 3.5 illustrates the double nanowires with a window-coupled system, the
parameters are,
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• VB = 18 meV, β = 0.3 nm−1, y0 = 0 aw

• VW = 18 meV, βx = 0.02 nm−1, βy = 0.3 nm−1, x1 = y1 = 0 aw.

In all our calculation we will fix the bias voltage of the system. Given the
bias window one can determine how many single electron states are in the central
system and how many energy subbands in the leads are needed to describe the
transport. We assume that the chemical potential in the left lead µR = 1.65 meV
and the chemical potential in the right lead µR = 0.75 meV are fixed. This gives
us a constant bias window ∆µ = µL− µR = −eVbias = 0.9 meV. The extention
parameter (∆ = 0.3 meV) which is the extended bias window to give the window
of relevant states ∆µ +2∆ = 1.5 meV. Shown in the Fig. 3.6.

Figure 3.6: (Color online) Energy spectrum of the leads (solid red) versus wave
number q Fig.(a); and energy spectrum of the coupling window DW system (cross
dot) versus the SES number n Fig.(b). B = 0.5 T, and the chemical potentials in
the the leads are µL = 1.65 meV and µR = 0.75 meV (dashed green) such that
∆µ = 0.9 meV. The window of relevant states is defined by the dotted blue lines
(1.5 meV).

The energy spectrum of the leads as a function of wave number q scaled by
a−1

w is presented in the Fig. 3.6(a). We see that the first subband is the most
important subband in the leads since the bias window ∆µ is located in it. Further
more, the top of the relevant (extended) active bias window covers the threshold
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of the second subband and the bottom of the relevant active bias window covers
the evanescent modes below the first subband.

The discrete energy levels as a function of the single electron quantum num-
ber n of the central sample is shown in the Fig. 3.6(b), the window of the relevant
states contains five single electron states (SESs), such that three SESs are located
in the bias window while the other two SESs are located in the top of the ex-
tended bias window. We should note that the length and the effective width of the
double nanowire does influence the contribution of single-electron states to the
bias window.

The main focuses here is on the time-depending transport properties and the
interference behavior between the wires in the presense of the coupling elements
in the barrier between the wires. We will show the influences of following param-
eters on the transport: the magnetic field, the Coulomb interaction, the coupling
window size, and the geometric of the nonlocal coupling function.
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3.2.1 Effects of the magnetic field

Now we discuss the influence of the magnetic field on the current dynamics. The
energy spectrum has an important role in the transport behavior. In Fig. 3.7 the
energy spectrum of the twenty lowest states of the central system as a function of
the magnetic field is plotted. We can generally see that the energy spectrum rises
with increasing magnetic field. The difference between the ground state n = 1
and the first excited state n = 2 energy is ∼ 0.49 meV for B = 0.0 T, when the
magnetic field increases to B = 1.0 T the difference becomes ∼ 0.16 meV. One
can see clearly how the states tend to group together in higher magnetic field.
This leads to a change of the single electron states in the bias window.

Figure 3.7: The Energy spectrum of the twenty lowest single-electron states of
the central system versus magnetic field.

Now let’s observe the time-dependent behavior of the current for different
magnetic fields in the non-interacting system. We have mentioned that the phys-
ical parameters gl

0a3/2
w , δ l

xa2
w, and δ l

ya2
w are fixed during our all calculation, but

when we are looking for the effects of the magnetic field, they should not be kept
constant with changing value of the magnetic field since they are scaled in terms
of the effective magnetic length.
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Fig. 3.8 shows the net current for various magnetic fields, focusing particu-
larly on the three different B-values B = 0.0 T (dotted black), B = 0.5 T (dashed
blue) and B = 1.0 T (solid red). When the magnetic field increases the net current
is seem to decrease is observed. The net current for B = 1.0 T still has an oscil-
lation at the earlier time, then soon it goes to the steady state value, while for the
other two cases the net current reaches to the steady state at a later time.

Figure 3.8: The noninteracting net current versus time for various magnetic field,
for a double quantum wire with a coupling element

According to the behavior of the net current, we divided the net current os-
cillation into two time regimes, which are short-time τs regime and long-time τl
regime. In the short time regime the net current has a strong oscillation with a
short time period, while in the long time regime the oscillation becomes weaker
and the time period is longer.

In the short time regime Fig. 3.9(a), an oscillation behavior is observed be-
cause electrons enter the sample from different subbands in the leads into more
than one state in the central system. Another point about the oscillation behavior
is that the oscillation could be relevant to the weak coupling contacts (there are
not oscillations in the case of a strong coupling) [35].
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Figure 3.9: The noninteracting net current versus time for various magnetic field,
for a double quantum wire with a coupling element

The time period in this regime is not affected by the magnetic field. However,
the peak-to-peak amplitudes are influenced by the magnetic field, as the magnetic
field changes the character of the energy spectrum (subbands) in the leads and
the SESs in the sample are changed, as demonstrated in Fig. 3.7. We should
mention that the two lower states in the sample are almost localized states (not
shown) and at B = 1.0 T these are the only states in the bias window. In addition,
the magnetic field increases the back scattering through the coupling element,
however we know that in a simple geometry a magnetic field generally reduces
backscattering.

In the long time regime Fig. 3.9(b), the oscillations of the net current are
much slower and the time period become larger. For lower magnetic field B = 0.0
and 0.5 T the net current exponentially decreases up to (t < 180 ps) while for
B = 1.0 T the net current is almost constant. After (t > 180 ps) the net current
goes to the steady state for all three values of the magnetic field.

One more relevant physical parameter is the mean charge of the central sys-
tem as shown in the Fig. 3.10. The total charge of the system is monotonically
increasing with time, but when B = 0.5 T it seems to be faster approaching to
a steady states, that is the reason why the net current for B = 0.5 T approaches
steady states faster than B = 1.0 T. We note that the charging processes in the
high magnetic field is slower than in a lower magnetic field.

To see the dynamics of electrons through the central DW system in the pres-
ence of different magnetic fields, we will show the many-electron charge distri-
bution at t = 10,25.6,100, and 200 ps in Fig. 3.11, which are pointed by a−d
from Fig. 3.9. The charging process from the leads to the central system is ob-
served from time (t = t0). In the short time regime, at t = 10 ps the electrons are
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Figure 3.10: The total charge of the noninteracting system, for a double quantum
wire with a coupling element

distributed through the DW system having oscillations and accumulating charge
is observed in the window coupling element at B = 0.0 T, which easily happens
because there is no Lorentz force pushing the electrons away from the center of
the sample, but when we tune the magnetic field to B = 0.5 T the electron trajec-
tories bend due to the Lorentz force, and the electrons go away from the coupling
window. In that case electrons located in the right wire prefer to make interwire
transfer as a backward or forward scattering to the left wire. When the magnetic
field increases to B = 1.0 T the effective magnetic length becomes small com-
pared to the length of the window, so the electrons totally transfer via interwire
scattering as can be seen from the right to the left wire. At t = 25.6 ps the many-
electron charge distribution continues with its oscillations in the absence of the
magnetic field, while for B = 0.5 T the left to right wire backward-scattering oc-
curs. At that time the many-electron charge density starts to make a ‘circular’
motion for B = 1.0 T.

In the long time regime, at time t = 100 ps the many-electron charge den-
sity spreads over the sample at B = 0.0 T, the same situation can be seen for
higher magnetic field B = 0.5 T except at the window-coupling element, while
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the ‘circular’ cyclotron motion is present for B = 1.0 T. The many-electron charge
distribution goes to the steady states without oscillation at t = 200 nm for all three
cases.

Figure 3.11: (Color online) The many-electron charge density for the noninter-
acting system. B = 0.0 T (left), B = 0.5 T (middle) and B = 1.0 T (right). The
system is a double wire with a coupling element
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3.2.2 Enhancement by the Coulomb interaction

We now describe the effects of the electron-electron interaction in the system.
The Coulomb interaction in the system is important and in the case of a weak
coupling it can lead to the so called Coulomb blockade, but there are finer details
we want to investigate (e.g. quasi-localized charge in the coupling window). First
we establish the left current IL which describes the total current flowing from the
left lead into the central sample through the left contact, and the right current
IR which displays the total current from the central sample into the right lead
through the right contact.

In Fig. 3.12 the noninteracting left IL,0 and right IR,0 current, and the inter-
acting left IL,I and right IR,I current are shown. We have recorded that the nonin-
teracting and interacting left current are almost the same up to t = 20 ps, while
for the noninteracting and interacting right current up to t = 75 ps are almost the
same. Note that there is a small fluctuation in the right current in the earlier time
which can occur because the sample is empty before the switching-on of the cou-
pling between the sample and the leads, i.e. the electrons transferring from the
right lead to the sample is observed.

Figure 3.12: The noninteracting and the interacting left and right current for B =
0.5 T.
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For better understanding the current oscillations, we separate the net current
into two regimes.

Figure 3.13: The noninteracting and the interacting net current for B = 0.5 T.
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In Fig. 3.13(a), the short time regime, we provide both the non-interacting and
the interacting net current as a function of time, where the net current IQ = IL−IR.
The peak-to-peak amplitude and the time period for the noninteracting net current
IQ,0 and the interacting net current IQ,I are the same with a rapid oscillation. The
rapid oscillation with short period exhibits quantum interference. In this regime,
the noninteracting and interacting currents are almost the same, the Coulomb
correlation is unimportant as only a fraction of electron has entered the sample.
For t > 20 ps the interacting net current is higher that the noninteracting case, as
we see at t = 35 ps their distinction becomes ∼ 0.1 nA.

In long time regime Fig. 3.13(b), the noninteracting IQ,0 and interacting IQ,I

net current are exponentially decreasing with time and a slow oscillation with
long time period can be seen in this limit. The slow oscillation indicates the sup-
pressing of the quantum interference feature. The Coulomb interaction enhances
the current, the difference between noninteracting and interacting net current be-
comes 0.15 nA at t = 200 ps i.e. (the Coulomb correlation is 15%).

At a later time t > 200 ps, the noninteracting net current is approaching to the
steady state while the interacting net current still doesn’t go to the steady state,
i.e. the time constants are longer for charging operation in the interacting case.

In Fig. 3.14 we plot the total charge for the noninteracting and interacting
system. In both cases the total charge is monotonically increasing with time.

Figure 3.14: The total charge of the noninteracting (0) and interacting system (I).
B = 0.5 T.
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The blue line (blue solid) indicates the noninteracting total charge which
seems to have reached the steady state after t = 200 ps, while for the interact-
ing system (green solid) line the total charge still continues to increase. Note that
the total charge for the interacting system is higher than the noninteracting sys-
tem, at time t = 250 ps the interacting one is approximately twice higher than the
noninteracting (the Coulomb correlation 36%). This indicates that the Coulomb
interaction makes easier to draw electrons into central system.

In Fig. 3.15 we show the many-electron charge distribution for the noninter-
acting and the interacting system at the short time regime t = 10, 25.6 ps, and the
long time regime t = 100, 200 ps, which are pointed out by a−d in the Fig. 3.13.
At time t = 10 and 25.6 ps electrons have a high probability to be backscattered
from the right to the left wire, and the interwire scattering from the left to the
right wire respectively. In this regime a slight charge accumulation is observed in
the window-coupling elements for the interacting system at 25.6 ps.

At time t = 100 and 200 ps the many-electron charge distribution further goes
to the steady states having a very small oscillation. We see that the Coulomb
interaction makes a quasi-bound electron accumulation in the coupled-window
with high density, while for the noninteracting case there is a circular empty
region in the coupled element.

The two lowest SESs in the bias window are poorly coupled to the leads
since they are localized in the coupling element in the middle of the system.
The Coulomb interaction delocalizes these states and thus enhances the current
through the system [36].
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Figure 3.15: (Color online) The many-electron charge density for the noninteract-
ing (left panel) and the interacting system (right panel). B = 0.5 T, Lx = 300 nm,
Lw = 100 nm.
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3.2.3 The size influence of the coupling element

The size of the coupling element between the wires does influence the transport
properties of the system. A coupling window in the central system causes inter-
wire backward scattering that suppressed the net current in the system. Fig. 3.16
displays the non-interacting net current for different sizes of the window. We
have chosen three different lengths of the coupled-window Lw = 0 nm (dotted
black), Lw = 50 nm (dashed blue), and Lw = 100 nm (solid red). We see that
the net current for the system without a coupling window is higher than the net
current with a window, since the interwire backscattering in the coupling window
suppressed the net current.

Figure 3.16: The non-interacting net current versus time for different size of the
window , B = 0.5 T.

Now we turn on the Coulomb interaction in the central system, and observe
what happens. In the short time regime Fig. 3.17(a) indicates that the interacting
net current has strong oscillations. The net current is increasing and is almost
the same up to t = 2 ps for all three cases. Later on, the net current starts it’s
oscillation behavior. We observed that the interacting net current in the presence
of the coupling window of length Lw = 100 nm is higher than the net current
without the window-coupling Lw = 0 nm, however the interwire backscattering is
higher in the longer window, while the complete opposite situation happens in the
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absence of the Coulomb interaction. The reason is that the Coulomb interaction
in the long window is more active in delocalizating the states in the window. We
note that the net current for the shorter window Lw = 50 nm is smaller than the
net current for Lw = 100 nm, and Lw = 0 nm. Here it is clear that the peak-to-peak
amplitude and the period time do not change with varying the size of the window.

Figure 3.17: The interacting net current is plotted as a function of time for differ-
ent size of the window, B = 0.5 T.
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The net current in the long time regime, Fig. 3.17(b), exponentially decreases
with time, having a very small oscillation and a long time period. The net current
for Lw = 100 nm is high while the net current for Lw = 50 nm and Lw = 0 nm is
lower. This implies that the Coulomb interaction has a great role in the transient
dynamics for the long window. Another reason here is that the longer coupling-
window lowers some of the states in the bias window and the Coulomb interaction
makes them more accessible for transport.

To explain the charging processes for the three different window-sizes in the
interacting system we display Fig. 3.18. The total charge for Lw = 100 nm is
higher than the total charge for Lw = 50 nm and Lw = 0 nm. This implies that the
charging for the longer window is faster.

Figure 3.18: The interacting total charge versus time for different size of the
window, B = 0.5 T.

In Fig. 3.19 the many-electron charge distribution for different sizes of the
window is presented. The times t = 14 and 31.2 ps are pointed out by a−b in
the short time regime Fig. 3.17(a). The many-electron charge distributions has
oscillation in the system, and the interwire backward scattering is presented in
the window coupling. The accumulation of the many-electron charge density in
the coupled-window Lw = 100 nm is higher than for Lw = 50 nm, because the
Coulomb interaction more effectively couples the states of the window and states
with more presence in the contact region. Furthermore without the window the
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charge distribution at t = 14 ps is almost only in the left wire which does occur
due to the Lorentz force. At time t = 100 and 200 ps labeled by c−d in the
long time regime Fig. 3.17(b), the many-electron charge distribution continues
to spread through the system with small oscillations. The charge in the coupling
element is very high for Lw = 100 nm due to the delocalization of the Coulomb
interaction, while for Lw = 50 nm it is lower.

Figure 3.19: (Color online) The interacting many-electron charge distribution
with different size of the coupling window: Lw = 0.0 nm (left), Lw = 50 nm
(middle), and Lw = 100 nm (right). B = 0.5 T.
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3.2.4 The nonlocal coupling geometry

Now we briefly discuss the effect of the nonlocal coupling strength Γl on the net
current dynamics. We keep the nonlocal coupling strength Γl = 4gl

0a3/2
w /(δ l

xδ l
y)

1/2 =
54.5 meV.nm2, a constant value. We take three different profile bandwidths of the
coupling function by changing the parameters of the nonlocal coupling strength.
The parameters are presented in Table 3.1, where the unit of δx and δy is nm−2.

Table 3.1: The parameters of the nonlocal coupling strength

coupling function coupling strength

2gl
0a3/2

w√
δ l

y

 nonlocal effect

(
2√
δ l

x

)
Γ1 gl

0a3/2
w = 60, δ l

y = 4.4×10−4 δ l
x = 4.4×10−4

Γ2 gl
0a3/2

w = 30, δ l
y = 1.1×10−4 δ l

x = 4.4×10−4

Γ3 gl
0a3/2

w = 15, δ l
y = 0.275×10−4 δ l

x = 4.4×10−4

With these parameters, the profile of the coupling function in the y-direction
is potted and shown in Fig 3.20, while we keep the nonlocal effect in x-direction
fixed.

Figure 3.20: The profile of the coupling strength in the y-direction. B = 0.5 T.

The transient current rises suddenly after switching on the contacts. We ob-
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served that decreasing the bandwidth of the coupling function, the current be-
comes higher as displayed in Fig 3.21.

In the short time regime Fig 3.21(a), the peak-to-peak amplitude of the os-
cillation decreases as the bandwidth of the coupling function increases, while
the period time is independent of the change. A broad coupling function in the
y-direction favors coupling to higher subbands and edge states, but lowers the
coupling to the band edge of the first subband in the leads.

In long time regime Fig 3.21(b), the steady state is reached faster with in-
creasing bandwidth of the coupling.

Figure 3.21: The interacting net current versus time for various nonlocal coupling
strength. B = 0.5 T, Lx = 300 nm, Lw = 100 nm.

The interacting many-electron charge distributions compared in Fig 3.22 at
t = 200 ps confirm that the best coupling is to have a narrower coupling func-
tion, because in that case the charging processes and the interwire transfer is
much higher than for the broader coupling. The charge accumulation and quasi-
localized charges in the window element is very high for a narrower coupling
function in the interacting system.

Figure 3.22: (Color online) The interacting many-electron charge distribution. Γ1
(left), Γ2 (middle) and Γ3 (right). B = 0.5 T, Lx = 300 nm, Lw = 100 nm.
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3.3 Double wire with a double coupling-window elements

The last nanostructure that we investigate is a parallel laterally double quantum
wire of length Lx with a double window-elements (DWW) in the barrier between
them. The potential defining the DWW subsystem with the coupling elements is
described by

VDW(r) = VMB(y)+VCW(x,y), (3.6)

where
VMB(y) = VB e(−β 2(y−y0)2), (3.7)

and

VCW(x,y) =−
2

∑
i=1

VWi e(−β 2
xi

(x−xi)2−β 2
yi

(y−yi)2). (3.8)

Fig. 3.23 indicates the double nanowires with a double window-coupling system.
The parameters are,

• VB = 16 meV, β = 0.15 nm−1, y0 = 0 aw

• VW1 = 16 meV, βx1 = 0.04 nm−1, βy1 = 0.15 nm−1, x1 = 2.0 aw, y1 = 0 aw.

• VW2 = 16 meV, βx2 = 0.04 nm−1, βy2 = 0.15 nm−1, x2 = 2.0 aw, y2 = 0 aw.

Figure 3.23: (Color online) Schematic representation of the potentail defining
the parallel double wire with a double window-coupling system. B = 0 T, Lx =
300 nm, Lw = 50 nm, and h̄Ω0 = 1.0 meV.
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We assume that the chemical potentials µL = 2.3 meV and µR = 1.6 meV are
fixed. This provides a constant bias window µL−µR =−eVbias = 0.7 meV. The
extention parameter (∆ = 0.3 meV) which is the extended bias window to give
the window of relevant states ∆µ +2∆ = 1.3 meV.

Contributing to the transport are eight SESs distributed as follows: the six
lowest states are located in the active bias window [µL,µR], while the other two
states are located in the top of the extended bias window [µL,µL + ∆]. One sub-
band in the leads is located in the relevant bias window (not shown).

We now compare the noninteracting (IQ,0) and interacting (IQ,I) time-dependent
net currents for the DWW system in Fig. 3.24. Besides the net current we plot
the noninteracting left current IL,0 which describes the total current flowing from
the left lead into the central system, and the noninteracting right current IR,0 indi-
cating the total current flowing from the central system into the right lead.

After switching-on the coupling at t = t0, the leads start the charging process
into the sample up to t = 10 ps . Later on, the left and the right current are
approaching the steady states having small oscillations in the right current.

Figure 3.24: The noninteracting and interacting net current versus time for B =
1.0 T.
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The noninteracting and interacting net current is increasing up to t = 20 ps
exhibiting oscillations, but not as strong as in the system with a single coupling-
element, then the net current exponentially decreases with time up to t = 150 ps.
The difference between noninteracting and interacting currents becomes 0.07 nA
(The Coulomb correlation ∼ 7%) at t = 250 ps when the system is approaching
the steady state.

Fig. 3.25 shows the noninteracting and interacting total charge, a similar en-
hancement in the total charge is observed as in the interacting DWW system, the
Coulomb correlation is 18% at t = 250 ps. It means that the Coulomb interaction
facilitates the entrance of the electrons into the central system. The same effect,
as we have observed in the system with low lying localized states away from the
contact region.

Figure 3.25: The total charge of the noninteracting (0) and interacting system (I).
B = 1.0 T.

The many-electron charge distributions in the central system compared in
Fig. 3.26 displays the noninteracting (left panel) and interacting (right panel)
system at t = 4,20,100 and 220 ps. At early time t = 4 ps, the wires seem to
be able to exchange charge between the left and the right wire through both the
coupling elements independently. We should note that there is no backscatter-
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ing process to the contacts in the many-electron charge motion here, because just
after switching-on the coupling a quasi-localized many-electron charge distribu-
tion appears in the windows for both noninteracting and interacting system. At
t = 20 ps the many-electron charge is moving from the left window to the right
window, mostly through the left wire, which gives us a nice oscillation between
both windows as a ‘dipole’ oscillation. The Coulomb interaction slightly affect
the charge density in the windows.

Later on, at time t = 100 and 220 ps the many-electron charge is localized
in the windows. Note that a ’circular’ motion can not be seen here because the
length of the central barrier is 120 nm which is larger that the magnetic length
at B = 1.0 T, but the charge distribution suggests a cyclotron motion of a more
complex structure.
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Figure 3.26: (Color online) The many-electron charge density for the noninteract-
ing (left panel) and the interacting system (right panel). B = 1.0 T, Lx = 300 nm,
and Lw = 50 nm.





Chapter 4
Summary and Conclusion

To summarize, we have presented a quantum general master equation formalism
to investigate time-dependent transport through open mesoscopic systems com-
posed of a finite sample connected to two semi-infinite leads via contact regions in
an external magnetic field. The electron-electron interaction was included in the
central sample, but neglected in the leads. The Coulomb interaction was treated
in a many-body description using an exact diagonalization method, in a truncated
many-body Fock-space using the state basis of the non-interacting system.

We used three different geometries of the central system, a parallel double
wire, a parallel double wire with a single coupling window, and a parallel double
wire with a double coupling window. In the first structure, we demonstrated that
the net current and the many-electron charge distribution were enhanced by the
Coulomb interaction with a rate of (10%) in the long time regime.

The second structure was a richer structure due to the observation of the inter-
ference phenomenon between the wires through the window-coupling. We have
demonstrated that the Coulomb interaction doesn’t have a great role in the short
time regime while the inter-wire backward scattering feature was dominant. In
addition, the net current is enhanced in the interacting system (Coulomb correla-
tion 15%), which was higher than the Coulomb correlation (10%) of the lateral
double wire system. A quasi-localized many-electron charge distribution was
induced in the coupled-window interacting system.

In the third structure, however we had a higher bias window but the net cur-
rent in the interacting system is not enhanced very much due to localization of
the electron charge in the windows coupled for both noninteracting and interact-
ing system. Moreover, the inter-wire backward scattering into the contacts is not

49
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active in this system.
The magnetic field had a great effect on the net current in the double wire with

a coupling window system. As the magnetic field increased the inter-wire back-
ward scattering into the contacts was increased through the coupling windows,
and the net current was suppressed in the system, while we know that generally
a magnetic field decreases backscattering. In addition with increasing magnetic
field the energy spectrum shifted up, and fewer single electron states participated
in the transport, so the net current was suppressed.

The conceived mesoscale coupling window system could serve as an elemen-
tary quantum device for sensitive spectroscopy tools for electrons and quantum
information processing by controlling the coupling window and the applied mag-
netic field.



Appendix A
Single electron

In this appendix an analytical derivation of the single electron model will be
shown.

A.1 Central system

For an isolated sample (t < t0), the single-electron Hamiltonian is

hSample = hS +VDW(r). (A.1)

We will describe the Hamiltonian of the pure and the embedded quantum wire.

A.1.1 Single finite wire

First we calculate the eigenvalues and wavefunctions of the non-perturbed wire.
Non-perturbed Hamiltonian of a quantum wire in an external perpendicular mag-
netic field can be described by

hS = π
2/2m∗+Vh(x)+Vp(y), (A.2)

where π = p+eA is the kinetic term, and the confining potentials Vh(x) and Vp(y)
denote the hard wall and the parabolically confinement potential respectively,
which are given by
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Vh(x) =


0, if |x|< Lx

2
,

∞, if |x|≥ Lx

2
,

(A.3)

and
Vp(y) =

1
2

m∗Ω2
0y2. (A.4)

The central system is finite with x in the interval [−Lx/2,Lx/2]. One can write
the Hamiltonian of the non-perturbed single-electron central system as

hS =
1

2m∗
[p+ eA]2 +

1
2

m∗Ω2
0y2, (A.5)

if we choose a homogenous magnetic field ~B to be in the z-direction (~B = Bz),
described in the Landau gauge by a vector potential A = (−By,0,0). The Hamil-
tonian is expressed as

hS =
1

2m∗

[
h̄
i
∇− eBy~x

]2

+
1
2

m∗Ω2
0y2, (A.6)

expanding the square bracket in the first term one has

hS =− h̄2

2m∗

(
∆

2− 2i
`2 y∂x−

y2

`2

)
+

1
2

m∗Ω2
0y2 (A.7)

where `2 = h̄/eB = h̄/m∗ωc is the magnetic length. The Hamiltonian can be
reorganized as

hS =
p2

x

2m∗
+

p2
y

2m∗
+

1
2

m∗Ω2
wy2 +ωcypx. (A.8)

Ω2
w = Ω2

0 +ω2
c and px = (h̄/i)∂x. Eq. (A.8) is the time-independent Hamiltonian

of the central system, so a two-dimensional Schrödinger equation is

hSψ
S
n (x,y) = Enψ

S
n (x,y), (A.9)

where ψS
n (x,y) and En are the single electron wave functions and the eigenvalues

of the central sample respectively. Using boundary conditions (a) ψS
n (−Lx

2 ,y) =
ψS

n (Lx
2 ,y) = 0 and (b) ψS

n (x,y→±∞) = 0, with Eq. (A.9) suggests that the wave
functions can be expanded as

Ψ
S
n = ∑

nx,ny

Cny
nx ϕnx(x)φny(y), (A.10)
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where ϕnx(x) and φny(y) are the complete basis wave functions Eq (2.7) and
Eq (2.8).

To calculate the matrix elements of the Hamiltonian of the central system we
divide Eq. (A.8) into three parts

hS = hx +hy +hxy, (A.11)

herein, hx = p2
x/2m∗, hy = p2

y/2m∗+(1/2)m∗Ω2
wy2 and hxy = ωcypx. Using the

Dirac notation we will get the matrix elements

〈ψS
n |hS|ψS

n 〉= 〈ψS
n |hx +hy +hxy|ψS

n 〉, (A.12)

with the following results

〈ψS
n |hx|ψS

n 〉=
n2

xπ2

2

(
a2

w

Lx

)2

(h̄Ωw)δnx,n
′
x
δny,n

′
y
, (A.13)

〈ψS
n |hy|ψS

n 〉=
(

n
′
y +

1
2

)
(h̄Ωw)δnx,n

′
x
δny,n

′
y
, (A.14)

and

〈ψS
n |hxy|ψS

n 〉= ih̄ωcaw Inx,n
′
x

√n
′
y

2
δny,n

′
y−1 +

√
n
′
y +1
2

δny,n
′
y+1

 , (A.15)

where

Inx,n
′
x
=



4nxn
′
x

(n2
x−n′2x )Lx

sin

(
n
′
xπ

2

)
cos
(nxπ

2

)
, if nx = even, n

′
x = odd

4nxn
′
x

(n2
x−n′2x )Lx

sin
(nxπ

2

)
cos

(
n
′
xπ

2

)
, if nx = odd, n

′
x = even.

combining these we obtain the matrix elements of the non-perturbed central wire
in a magnetic field

〈ψS
n |hS|ψS

n 〉= δnxn′x
δnyn′y

h̄Ωw Ξ
0
nx,n′y

+ h̄ωc i awInx,n
′
x

Ξ
B
n′y,ny

, (A.16)

herein,

Ξ
0
nx,n′y

=

[
1
2

(
nxπaw

Lx

)2

+
(

n
′
y +

1
2

)]
,
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and

Ξ
B
n′y,ny

=

√n
′
y

2
δny,n

′
y−1 +

√
n
′
y +1
2

δny,n
′
y+1

 .

Eq. (A.16) are the matrix elements, which yield the discrete energy spectrum of
the central sample.

A.1.2 Embedded finite wire

In this section, we briefly present the matrix elements of the embedded potential.
We have shown that the embedded double quantum wire subsystem DW VDW is
described by

VDW(r) = VMB(y)+VCW(x,y). (A.17)

We will focus here on the calculation of the matrix elements

〈n′|VDW|n〉= 〈n′|(VMB +VCW)|n〉. (A.18)

Matrix elements of the middle barrier potential

The potential barrier separating the double lateral wires has the following form

VMB(y) = VB e(−β 2
0 (y−y0)2), (A.19)

the matrix elements of the barrier potential are

〈n′|VMB|n〉= VMB n′;n = δn′x,nxVn′y;ny , (A.20)

where
Vn′y;ny =

∫
dy φ

∗
n′y

(y) VMB(y) φny(y). (A.21)

Using the basis wave functions φny(y) one can get

Vn′y;ny =

(
VB

aw[2(ny+n′y) ny!n′y! π]
1
2

) ∫
dy Hn′y(y/aw)Hny(y/aw)

× e(−β 2
0 a2

w((y/aw)−(y0/aw))2−(y/aw)2). (A.22)

We shall use u = y/aw and β̃0 = β 2
0 a2

w, to simplifying the matrix elements

Vn′y;ny =
VB

[2(ny+n′y) ny!n′y! π]
1
2

∫
du e−(β̃0(u−u0)2+u2) Hn′y(u)Hny(u). (A.23)
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To perform the integral we need

β̃0(u−u0)2 +u2 = β̃0u2−2β̃0uu0 + β̃0u2
0 +u2

= β̃0u2−2β̃0uu0 + β̃0u2
0 +u2−

β̃0u2
0

1+ β̃0
+

β̃0u2
0

1+ β̃0

=−

[
(1+ β̃0)

1
2 u− β̃0u0

(1+ β̃0)
1
2

]
−

β̃0u2
0

1+ β̃0
,

let’s use z = (1+ β̃0)
1
2 u, and rearrange the terms, then Eq. (A.23) is transformed

into

Vn′y;ny =
VB

[2(ny+n′y) ny!n′y! π]
1
2

e−[β̃0u2
0/(1+β̃0)]

(1+ β̃0)
1
2

×
∫

dz e−[z−β̃0u0/(1+β̃0)
1
2 ]2 Hn′y

(
z

(1+ β̃0)
1
2

)
Hny

(
z

(1+ β̃0)
1
2

)
. (A.24)

Using the identity of the Hermite polynomials

∫
dze−(z−z0)2

Hm′(αz)Hm(αz) = π
1
2

min(m,m′)

∑
k=0

2k k!
(

m
k

)(
m′

k

)

× (1−α
2)( m+m′

2 −k) Hm+m′−2k

(
αz0

(1−α2)
1
2

)
.

(A.25)

and comparing Eq. (A.24) with Eq. (A.25), we explicity get with α = 1/(1 +
β̃0)

1
2 , that Eq. (A.24) is transformed to the following form

Vn′y;ny =
VB

[2(ny+n′y) ny!n′y!]
1
2

e−[β̃0u2
0/(1+β̃0)]

(1+ β̃0)
1
2

min(ny,n′y)

∑
k=0

2k k!
(

ny

k

)(
n′y
k

)

×

(
β̃0

(1+ β̃0)

)(
ny+n′y

2 −k)

Hny+n′y−2k

 β̃0
1
2 u0

(1+ β̃0)
1
2

 . (A.26)
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Finally using the values u = y/aw and β̃0 = β 2
0 a2

w to get the matrix elements of
the barrier potential

Vn′y;ny =
VB

[2(ny+n′y) ny!n′y!]
1
2

e−[(β 2
0 y2

0)/(1+β 2
0 a2

w)]

(1+β 2
0 a2

w)
1
2

min(ny,n′y)

∑
k=0

2k k!
(

ny

k

)(
n′y
k

)

×
(

β 2
0 a2

w

(1+β 2
0 a2

w)

)(
ny+n′y

2 −k)

Hny+n′y−2k

(
β0y0

(1+β 2
0 a2

w)
1
2

)
. (A.27)

Matrix elements of the coupling window potential

The potential VCW plays the ’scattering’ role in the central system. It allows
interference between the two wires beyond the tunneling. The coupling window
potential is

VCW(x,y) =−
j

∑
i=1

VWi e(−β 2
xi

(x−xi)2−β 2
yi

(y−yi)2), (A.28)

If j = 1 there will be a single coupling window, but if j = 2 double coupling
window exist in the barrier between the two wires. The matrix elements can be
expressed as

(VCW)n′;n = 〈n′|VCW(x,y)|n〉=−
j

∑
i=1

VWi Vn′x;nx,iVn′y;ny,i. (A.29)

Vn′x,nx = 〈n′x|e−β 2
x x2 |nx〉 and Vn′y,ny = 〈n′y|e−β 2

y y2 |ny〉. We first calculate Vn′x,nx , with
the basis wave functions different for even and odd values of the quantum num-
bers (nx, n′x), so there are four possibilities to perform the integral in terms of the
quantum numbers

• nx is odd n′x is odd

• nx is odd n′x is even

• nx is even n′x is odd

• nx is even n′x is even
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If nx and n′x is odd integer, the matrix elements are

Vn′x,nx = 〈n′x|e−β 2
x x2 |nx〉

=
2
Lx

∫ + Lx
2

− Lx
2

dx cos
(

n′xπx
Lx

)
e−β 2

x (x−x0)2
cos
(

n′xπx
Lx

)
, (A.30)

using ux =
x
Lx

we have

Vn′x,nx = 2
∫ + 1

2

− 1
2

dux cos(n′xπux) e−[βxLx(ux−ux0 )]2 cos(nxπux). (A.31)

If nx, n′x are even integers we will have

Vn′x,nx = 2
∫ + 1

2

− 1
2

dux sin(n′xπux) e−[βxLx(ux−ux0 )]2 sin(nxπux). (A.32)

Note that the integral will be zero for the other two cases. Rearranged the matrix
elements are

Vn′x,nx =


2
∫ + 1

2
− 1

2
dux cos(n′xπux) e−[βxLx(ux−ux0 )]2 cos(nxπux), if nx,n

′
x = odd,

2
∫ + 1

2
− 1

2
dux sin(n′xπux) e−[βxLx(ux−ux0 )]2 sin(nxπux), if nx,n

′
x = even.

(A.33)
We solve the Eq. (A.33) numerically.

The matrix elements of Vn′y;ny are derived analytically and we already have
done it for the middle barrier matrix elements. The same steps can be done to get
Vn′y,ny , but we use βy here instead of β0 earlier

Vn′y;ny =
1

[2(ny+n′y) ny!n′y!]
1
2

e−[(β 2
y y2

0)/(1+β 2
y a2

w)]

(1+β 2
0 a2

w)
1
2

min(ny,n′y)

∑
k=0

2k k!
(

ny

k

)(
n′y
k

)

×

(
β 2

y a2
w

(1+β 2
y a2

w)

)(
ny+n′y

2 −k)

Hny+n′y−2k

(
βyy0

(1+β 2
y a2

w)
1
2

)
. (A.34)

Finally the coupling window potential gives

Vn′;n =−
j

∑
i=1

VWi Vn′x;nx,iVn′y;ny,i. (A.35)
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A.2 The Leads

Here, the theoretical framework of a lead Hamiltonian and it’s matrix elements is
introduced. Assuming the leads and the central system to have the same confine-
ment potential. The Hamiltonian of a semi-infinite lead in an external perpendic-
ular magnetic field can be described by

hl =
1

2m∗
[p+ eA]2 +W l

h(x)+W l
p(y), (A.36)

the first term is the kinetic part, and the confining potentials W l
h(x) and W l

p(y)
denote the hard wall and the parabolically confinement potential respectively,
they have the following form

W L
h (x) =


0, −∞≥ x >−Lx/2,

∞, otherwise,

W R
h (x) =


0, ∞≥ x > Lx/2,

∞, otherwise,
(A.37)

and
W l

p(y) =
1
2

m∗Ω2
0y2. (A.38)

Using these potentials one can write the Hamiltonian of a lead as

hl =
1

2m∗
[p+ eA]2 +

1
2

m∗Ω2
0y2, (A.39)

if the magnetic field ~B to be in the z-direction, and the vector potential A =−Byx̂.
One can express the Hamiltonian as

hl =
1

2m∗

[
h̄
i
∇− eBy~x

]2

+
1
2

m∗Ω2
0y2, (A.40)

rearranging the first term we obtain

hl =− h̄2

2m∗

(
∆

2− 2i
`2 y∂x−

y2

`2

)
+

1
2

m∗Ω2
0y2 (A.41)

where the magnetic length ` =
√

h̄/eB. Rearranging the Hamiltonian again we
get

hl =
p2

x

2m∗
+

p2
y

2m∗
+

1
2

m∗Ω2
wy2 +ωcypx. (A.42)
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Inserting the Hamiltonian into the Schrödinger equation gives(
p2

x

2m∗
+

p2
y

2m∗
+

1
2

m∗Ω2
wy2 +ωcypx

)
ψ

l
q(x,y) = Eqψ

l
q(x,y). (A.43)

The boundary conditions of the wavefunctions are different for both leads. The
left lead boundary condition are (a) ψL

q (−Lx
2 ,y)=0 and (b) ψL

q (x,y→±∞)=0 for
the left lead, and the right lead boundary condition are (a) ψR

q (Lx
2 ,y)=0 and (b)

ψR
q (x,y→ ±∞)=0. Using the boundary conditions, the wave functions can be

expanded as

ψ
l
q(x,y) =

∫
dp Cny,n′y(q, p)ϕ l

p(x)φ
l
n′y

(y), (A.44)

where ϕ l
p(x) and φ l

n′y
(y) are complete basis wave functions of a lead Eq. (2.13)

and Eq. (2.14). In Dirac notation the states can be expressed as |qny〉. One obtains
the matrix elements

〈qny|hl|q′n′y〉=

〈
qny

∣∣∣∣∣
(

p2
x

2m∗
+

p2
y

2m∗
+

1
2

m∗Ω2
wy2 +ωcypx

)∣∣∣∣∣q′n′y
〉

, (A.45)

that we can divide into three parts yielding the following forms

〈qny|
(

p2
x

2m∗

)
|q′n′y〉=

h̄Ωw

2
(awq′)2

δny,n′yδ (q−q′), (A.46)

〈qny|

(
p2

y

2m∗
+

1
2

m∗Ω2
wy2

)
|q′n′y〉= h̄Ωw

(
n′y +

1
2

)
δny,n′yδ (q−q′), (A.47)

〈qny|ωcypx|q′n′y〉= h̄ωc aw Iq,q′

√n′y
2

δny,n′y−1 +

√
n′y +1

2
δny,n′y+1

 , (A.48)

where

Iq,q′ =−
(

iqq′

2π

)
℘

(q2−q′2)
.

Substituting Eq. (A.46) to Eq. (A.48) into Eq. (A.45) the matrix elements of a
lead Hamiltonian are presented as

〈qny|hl|q′n′y〉= ϒ
0
q′,n′y

δny,n′yδ (q−q′)+ h̄ωc aw Iq,q′ϒ
B
ny,n′y

, (A.49)

herein,

ϒ
0
q′,n′y

= h̄Ωw

[
1
2
(
awq′

)2 +
(

n′y +
1
2

)]
,
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and

ϒ
B
ny,n′y

=

√
n′y
2

δny,n′y−1 +

√
n′y +1

2
δny,n′y+1.

We use the basis eigenstates of a semiinfinite wire without a magnetic field
to expand a new state |pmy)

|pmy) = ∑
n′y

∫
∞

0
dq′Cn′y,my(q′, p) |q′n′y〉, (A.50)

where Cn′y,my(q′, p) is a complex constant. The Schrödinger equation of the new
eigenstate is

hl|pmy) = Ep,ny |pmy). (A.51)

Inserting Eq. (A.50) into the Schrödinger equation yields

∑
n′y

∫
∞

0
dq′ 〈qny|hl|q′n′y〉Cn′y,my(q′, p) = Ep,my Cny,my(q, p), (A.52)

Substituting Eq. (A.49) into the above equation gives

Ep,my Cny,my(q, p) = ∑
n′y

∫
∞

0
dq′

[
E0

q′,n′y
δny,n′yδ (q−q′)

]
Cn′y,my(q′, p)

+∑
n′y

∫
∞

0
dq′
[
h̄ωc aw Iq,q′EB

ny,n′y

]
Cn′y,my(q′, p). (A.53)

Rearranging the terms, one explicity writes[
Ep,my−E0

q,ny

]
Cny,my(q, p) = ∑

n′y

∫
∞

0
dq′
[
h̄ωc aw Iq,q′EB

ny,n′y

]
Cn′y,my(q′, p),

(A.54)
and inserting Iq,q′ into the above equation we get[

Ep,my−E0
q,ny

]
Cny,my(q, p)=

(
iq awh̄ωc

2π

)
∑
n′y

EB
ny,n′y

∫
∞

0
dq′

q′℘
(q′2−q2)

Cn′y,my(q′, p).

(A.55)
Let’s first take the integral part∫

∞

0
dq′

q′℘
(q′2−q2)

Cn′y,my(q′, p) =
1
2

∫
∞

−∞

dq′
q′℘

(q′2−q2)
Cn′y,my(q′, p),
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using the Residual Theorem, one obtains

Ic =
1
2

∮
dq′

q′

(q′2−q2)
Cn′y,my(q′, p) =

1
2

2πi Res
(

q′

(q′2−q2)
Cn′y,my(q′, p),q

)
,

(A.56)
and the Residue gives

Res
(

q′

(q′2−q2)
Cn′y,my(q′, p), q

)
= lim

q′→ q
(q′−q)

q′Cn′y,my(q′, p)
(q′2−q2)

=
Cn′y,my(q′, p)

2
.

Inserting the value of Residue in the Eq. (A.56), we obtain

Ic = πi
Cn′y,my(q′, p)

2
,

from the Fig. A.1 we can divide the integration into four parts

Figure A.1: Schematic of the contour integration in the complex plane.

Ic =
1
2

∫
∞

−∞

dq′
q′℘

(q′2−q2)
Cn′y,my(q′, p)+

∫
ca

..+ iπ Res F(q)− iπ Res F(−q),

(A.57)
F(q) is the integrand. We can get the result for the integral of Eq. (A.55) as

1
2

∫
∞

−∞

dq′
q′℘

(q′2−q2)
Cn′y,my(q′, p) =

iπ
2

Cn′y,my(q, p). (A.58)
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Inserting Eq. (A.58) into Eq. (A.55) the final result is

∑
n′y

[
δny,n′yE

0
q,n′y
− h̄ωcaw

4
q EB

ny,n′y

]
Cn′y,my(q, p) = Ep,myC

ny,my(q, p). (A.59)

A linear coupled system of algebraic eigenvalue equations that can be solved
numerically. Evaluating the countour integral we assume that no bound states are
formed in the semi-infinite quantum wire in the external magnetic field.



Appendix B
The many-electron eigenvalue
problem

We start from the fundamental properties of Fermi creation and annihilation op-
erators [37]

d†
n′dn|iν1 , iν2 , . . . , iνn , . . . , iνNSES

〉= iνn |iν1 , iν2 , . . . , iνn , . . . , iνNSES
〉, (B.1)

with

dn|iν1 , iν2 , . . . , iνn , . . . , iνNSES
〉=

{
(−1)αn |iν1 , iν2 , . . . ,0, . . . , iνNSES

〉 if iνn = 1,

0 if iνn = 0.
(B.2)

d†
n |iν1 , iν2 , . . . , iνn , . . . , iνNSES

〉=

{
0 if iνn = 1.

(−1)αn |iν1 , iν2 , . . . ,1, . . . , iνNSES
〉 if iνn = 0,

(B.3)
here αn = ∑

n−1
j=1 iνn .

The language of second quantization is used to describe the Hamiltonian of
the system in the many-electron basis. In the second quantization, all operator
can be expressed in terms of the fundamental creation and annihilation operators.
The Hamiltonian of the isolated central system including the Coulomb interaction
has the following form

HS = ∑
n

End†
ndn +

1
2 ∑

n′,m′
∑
n,m

Vn′,m′;n,md†
n′d

†
m′dndm, (B.4)
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En are the energy of the single electron states of the central sample. To calculate
the interacting many-electron eigenvalues we define

E I
ν ′ν = 〈ν ′|HS|ν〉, (B.5)

where E I
ν ′ν is a matrix element of the interacting many-electron Hamiltonian.

Inserting Eq. (B.4) into Eq. (B.5) we obtain

E I
ν ′ν = ∑

n
En 〈ν ′|d†

ndn|ν〉+
1
2 ∑

n′,m′
∑
n,m

Vn′,m′;n,m〈ν ′|d†
n′d

†
m′dndm|ν〉, (B.6)

the matrix elements of the Coulomb interacting in the single electron basis is
given by

Vn′,m′;n,m = 〈n′m′|V |nm〉=
∫

drdr′ψS
n′(r)

∗
ψ

S
m′(r

′)∗V (r−r′)ψS
n (r)ψS

m(r′), (B.7)

with the Coulomb kernel given by

V (r− r′) =
e2

4πε0εr

1√
(x− x′)2 +(y− y′)2 +η2

. (B.8)

Scaling in the natural energy and length scale here, one explicity writes

e2

4πε0εr
= h̄Ωw

aw

a∗0
, (B.9)

where a∗0 is effective Bohr radius which is 9.79 nm for GaAs semiconductor ma-
terial. Substituting Eq. (B.8) into Eq. (B.7) we get

Vn′,m′;n,m =
∫

dr ψ
S
n′(r)

∗ Im′,m ψ
S
n (r), (B.10)

with
Im′,m =

∫
dr′ψS

m′(r
′)∗V (r− r′)ψS

m(r′). (B.11)

Now revisiting Eq. (B.6) and using the non-interacting MESs in Eq. (2.20), the
first term can be written as

E 0
ν ′ν = ∑

n
Eniνn . (B.12)

E 0
ν ′ν is the non-interacting many-electron energy. Finally the matrix elements of

the interacting many-electron Hamiltonian are

E I
ν ′ν = E 0

ν ′ν +
1
2 ∑

n′,m′
∑
n,m

Vn′,m′;n,m〈ν ′|d†
n′d

†
m′dndm|ν〉. (B.13)

The eigenvalue equation is solved numerically in a truncated many-electron basis.



Appendix C
The QGME Formalism

We start from the quantum Liouville-von Neumann (L-N) equation to derive the
QGME

dρ(t)
dt

=− i
h̄

[H(t),ρ(t)]≡−iL ρ(t), (C.1)

ρ(t) is the full density operator that describes the statistical state of the composite
system, and the Liouville super-operator is L = LSample +LLeads +LTransfer. We
use the Nakajima and Zwanzig formalism to project the full density operator into
two parts

ρ(t) = Pρ(t)+(1−P)ρ(t), (C.2)

with P = ρlTrLeads being a super-operator. Substituting Eq. (C.2) into Eq. (C.1)
and applying the projection operators P and Q to the L-N equation the following
set of coupled differential equations is obtained

P
dρ(t)

dt
=−iPL Pρ(t)− iP L Qρ(t), (C.3)

Q
dρ(t)

dt
=−iQ L Pρ(t)− i QL Qρ(t), (C.4)

where Q = (1−P). The first equation describes the time evolution of the rele-
vant part while the second one describes the evolution of the irrelevant part of the
system. Using the projection operator properties such as

• PL P = LSampleP ,

• PL Q = PLTransferQ,

65
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• QL P = QLTransferP ,

• QL Q = (LSample +LLeads +Q LTransfer)Q.

The two coupled equations can be expressed as

P
dρ(t)

dt
=−iLSamplePρ(t)− iP LTransfer Qρ(t), (C.5)

Q
dρ(t)

dt
=−iLTransfer Pρ(t)− i(LSample +LLeads +Q LTransfer) Qρ(t). (C.6)

A formal solution of the second equation is given by

Qρ(t) =−i
∫ t

t0
dt ′ Te−i

∫ t′′
t′ dt

′′
(LSample+LLeads+Q LTransfer) LTransferPρ(t ′), (C.7)

where the initial condition QW (0) = 0 is used, and T is a time ordering operator.
Under the assumption of a weak-coupling QLTransfer = 0, and denoting LTransfer
as LT one obtains

Qρ(t) =−i
∫ t

t0
dt ′ Te−i

∫ t′′
t′ dt

′′
(LSample+LLeads) LTPρ(t ′), (C.8)

if LSample and LLeads are time-independent we obtain

Qρ(t) =−i
∫ t

t0
dt ′ e−i(LSample+LLeads)(t−t ′) LTPρ(t ′), (C.9)

denoting L0 = LSample +LLeads, Eq. (C.9) gives

Qρ(t) =−i
∫ t

t0
dt ′e−

i
h̄ H0(t−t ′) LTPρ(t ′) e

i
h̄ H0(t−t ′), (C.10)

where H0 = HSample + HLeads. Substituting Eq. (C.10) into the second term of
Eq. (C.5) with using P = ρlTrLeads we obtain

P
dρ(t)

dt
=−iLSPρ(t)−ρlTrLeads

{
LT

∫ t

t0
dt ′ U0(t− t ′) LTPρ(t ′) U†

0 (t− t ′)
}

,

(C.11)
where U0(t− t ′) = e−

i
h̄ H0(t−t ′) is the evolution operator of the closed system. Our

system is weakly coupled, so higher than second order terms have been neglected
in the expansion of the kernal of the equation. In that case the tunneling of the
electrons is the so-called sequential tunneling.
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The reduced density operator (RDO) of the central system can be defined as
the trace of the full density operator of the composite system with respect to the
reservoirs

ρS(t) = TrLeads(Pρ(t)). (C.12)

In the weak coupling approximation the density matrix of the leads ρl is only
negligible affected by the coupling. Using this approximation and taking one
more trace (TrLeads) in the Eq. (C.11) to get

dρS(t)
dt

=−iLSρS(t)−TrLeads

{
LT

∫ t

t0
dt ′ U0(t− t ′) LTρlρS(t ′) U†

0 (t− t ′)
}

,

(C.13)

with TrLeads ρl = 1. From the Eq. (C.1) we can write LTρlρS(t ′)=
1
h̄

[
H l

T(t ′),ρlρS(t ′)
]
,

the Eq. (C.13) becomes

dρS(t)
dt

=− i
h̄

[HS,ρS(t)]

− 1
h̄2 TrLeads

{[
H l

T(t),
∫ t

t0
dt ′U0(t− t ′)

[
H l

T(t ′),ρlρS(t ′)
]

U†
0 (t− t ′)

]}
.

(C.14)

It is clear that the density operator ρS is nonlocal in time, which gives us the
non-Markovian approximation limit.

To simplify the expression one can rewrite the equation of motion for the
RDO in the following form[38]

dρS(t)
dt

=−iLeffρS(t)+
∫ t

t0
dt ′K (t, t ′)ρS(t ′), (C.15)

where,

LeffρS(t) =
1
h̄
[HS,ρS(t)], (C.16)

and

K (t, t ′)ρS(t ′) =− 1
h̄2 TrLeads

{
[H l

T(t),U0(t− t ′) [H l
T(t ′),ρlρS(t ′)] U†

0 (t− t ′)]
}

.

(C.17)
Leff stands for the effective Liouvillian and K (t, t ′) denotes the integration ker-
nel [38].
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By taking the second term of Eq. (C.15), one can perform the commutator
relations getting the following form

∫ t

t0
dt ′K (t, t ′)ρS(t ′) =− 1

h̄2 Trl

∫ t

t0
dt ′ (C.18)

×{H l
T(t)U0(t− t ′)H l

T(t ′)U†
0 (t− t ′)U0(t− t ′)ρS(t ′)U†

0 (t− t ′)ρl

−H l
T(t)U0(t− t ′)ρS(t ′)U†

0 (t− t ′)ρlU0(t− t ′)H l
T(t ′)U†

0 (t− t ′)

−U0(t− t ′)H l
T(t ′)U†

0 (t− t ′)U0(t− t ′)ρS(t ′)U†
0 (t− t ′)ρlH l

T(t)

+U0(t− t ′)ρS(t ′)U†
0 (t− t ′)ρlU0(t− t ′)H l

T(t ′)U†
0 (t− t ′)H l

T(t)}.

As we mentioned the transfer Hamiltonians in the single-electron basis has the
following form

H l
T(t) = χ

l(t)∑
n

∫
dq
[
cl

q
†
T l

qndn +d†
n(T l

nq)
†cl

q

]
. (C.19)

We use the completeness of the MESs ∑ν |ν)(ν | = 1 to convert H l
T(t) to the

many-electron basis, we get

H l
T(t) = χ

l(t)
∫

dq
(
T l(q)cl

q + cl
q

†
(T l(q))†

)
, (C.20)

where T l(q) is the many-electron coupling matrix for non-interacting electrons

T l(q) = ∑
ν ,ν ′

T l
ν ,ν ′(q) |ν ′)(ν |, (C.21)

with T l
νν ′(q) = ∑n T l

nq(ν |d†
n |ν ′) in terms of the single-electron coupling matrix

T l
nq.

Substituting Eq. (C.20) into Eq. (C.18), and doing these steps; (a) using the
property [HSample,HLead] = 0, the evolution operator can be separated into two
parts U0(t − t ′) = US(t − t ′)UL(t − t ′), (b) using the cyclicity of the trace with
respect to TrLead and HLead the terms are reduced by Trl(c̃q(t)c̃′q(t)ρl) = 0, where
c̃q(t) is introduced in terms of the leads Hamiltonian as c̃q(t) = exp( i

h̄ HLeadst)×
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cq× exp(− i
h̄ HLeadst). Then Eq. (C.18) gives∫ t

t0
dt ′K (t, t ′)ρS(t ′) =−χ l(t)

h̄2

∫ t

t0
dt ′χ l(t ′)

∫
dqdq′ (C.22)

× [ T l(q)US(t− t ′)(T l(q′))†
ρS(t ′)U†

S (t− t ′)Trl(c̃
†
q′(t
′)c̃q(t)ρl)

+(T l(q′))†US(t− t ′)T l(q)ρS(t ′)U†
S (t− t ′)Trl(c̃q′(t ′)c̃†

q(t)ρl)

−US(t− t ′)(T l(q′))†
ρS(t ′)U†

S (t− t ′)T l(q)Trl(c̃q(t)c̃†
q′(t
′)ρl)

−US(t− t ′)T l(q)ρS(t ′)U†
S (t− t ′)(T l(q′))† Trl(c̃†

q(t)c̃q′(t ′)ρl)

−T l(q)US(t− t ′)ρS(t ′)(T l(q′))†U†
S (t− t ′)Trl(c̃

†
q′(t
′)c̃q(t)ρl)

− (T l(q′))†US(t− t ′)ρS(t ′)T l(q)U†
S (t− t ′)Trl(c̃q′(t ′)c̃†

q(t)ρl)

+US(t− t ′)ρS(t ′)(T l(q′))†U†
S (t− t ′)T l(q)Trl(c̃q(t)c̃†

q′(t
′)ρl)

+US(t− t ′)ρS(t ′)T l(q)U†
S (t− t ′)(T l(q′))† Trl(c̃†

q(t)c̃q′(t ′)ρl) ].

Using the identities

Trl
(
c̃q(t)c̃ †q′ (t)ρl

)
= e−i(t−t ′)ε l(q)

δ (q−q′)
(

1− f (ε l(q))
)

,

Trl
(
c̃ †q′ (t)c̃q(t)ρl

)
= ei(t−t ′)ε l(q)

δ (q−q′)
(

f (ε l(q))
)

, (C.23)

and performing the Delta-integral
∫

dq′δ (q−q′), we obtain

∫ t

t0
dt ′K (t, t ′)ρS(t ′) =−χ l(t)

h̄2

∫ t

t0
dt ′χ l(t ′)

∫
dq

×[ T l(q)US(t− t ′)(T l(q′))†
ρS(t ′)U†

S (t− t ′)(1− f (ε l(q)))e−i(t−t ′)ε l(q)

− T l(q)US(t− t ′)ρS(t ′)(T l(q′))†U†
S (t− t ′) f (ε l(q))e−i(t−t ′)ε l(q)

−US(t− t ′)(T l(q′))†
ρS(t ′)U†

S (t− t ′)T l(q)(1− f (ε l(q)))e−i(t−t ′)ε l(q)

+ US(t− t ′)ρS(t ′)(T l(q′))†U†
S (t− t ′)T l(q) f (ε l(q))e−i(t−t ′)ε l(q)

+ US(t− t ′)ρS(t ′)T l(q)U†
S (t− t ′)(T l(q′))† (1− f (ε l(q)))ei(t−t ′)ε l(q)

−US(t− t ′)T l(q)ρS(t ′)U†
S (t− t ′)(T l(q′))† f (ε l(q))ei(t−t ′)ε l(q)

− (T l(q′))†US(t− t ′)ρS(t ′)T l(q)U†
S (t− t ′)(1− f (ε l(q)))ei(t−t ′)ε l(q)

+ (T l(q′))†US(t− t ′)ρS(t ′)T l(q)U†
S (t− t ′) f (ε l(q))ei(t−t ′)ε l(q) ].

(C.24)
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Rearranging the terms∫ t

t0
dt ′K (t, t ′)ρS(t ′) =−χ l(t)

h̄2

∫ t

t0
dt ′χ l(t ′)

∫
dq (C.25)

× [ T l(q′)US(t− t ′)×{(T l(q′))†
ρS(t ′)(1− f (ε l(q))) −

ρS(t ′)(T l(q′))† f (ε l(q))}×U†
S (t− t ′)e−i(t−t ′)ε l(q)

−US(t− t ′)×{(T l(q′))†
ρS(t ′)(1− f (ε l(q))) −

ρS(t ′)(T l(q′))† f (ε l(q))}×U†
S (t− t ′)T l(q)e−i(t−t ′)ε l(q)

+US(t− t ′)×{ρS(t ′)T l(q)(1− f (ε l(q))) −

T l(q)ρS(t ′) f (ε l(q))}×U†
S (t− t ′)(T l(q))†ei(t−t ′)ε l(q)

− (T l(q))†US(t− t ′)×{ρS(t ′)T l(q)(1− f (ε l(q))) −

T l(q)ρS(t ′) f (ε l(q))}×U†
S (t− t ′)ei(t−t ′)ε l(q) ],

and rewriting the evolution operator as US(t− t ′) = e−
i
h̄ HSample(t−t ′) = e−

i
h̄ HSamplet ∗

e
i
h̄ HSamplet ′ , and denoting

Ω
l(q) = e−

i
h̄ HSamplet

∫ t

t0
dt ′ χ

l(t ′) (C.26)

× e
i
h̄ HSamplet ′

(
(T l(q′))†

ρS(t ′)(1− f (ε l(q)))−ρS(t ′)(T l(q′))† f (ε l(q))
)

× e−
i
h̄ HSamplet ′× e

i
h̄ HSamplete−i(t−t ′)ε l(q).

Insertion of Eq. (C.26) into Eq. (C.25) yields∫ t

t0
dt ′K (t, t ′)ρS(t ′) =−χ l(t)

h̄2

∫
dq×

(
T l(q)Ωl(q)−Ω

l(q)T l(q)
)

−χ l(t)
h̄2

∫
dq
(
(Ωl(q))†(T l(q))†− (Ωl(q))†(T l(q))†

)
. (C.27)

Finally we obtain the equation of motion for the RDO

dρS(t)
dt

=− i
h̄

[
HSample,ρS(t)

]
− 1

h̄2 ∑
l=L,R

χ
l(t)

∫
dq
([

T l(q),Ωl
q(t)
]
+h.c.

)
,

(C.28)
herein,

Ω
l
q(t) = U†

S (t)
∫ t

t0
dt ′ χ l(t ′)Πl

q(t
′)× e(−

i
h̄ (t−t ′)ε l(q))US(t),
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with

Π
l
q(t ′) = US(t ′)

[(
T l(q)

)†
ρS(t ′)

(
1− f l (ε(q))

)
−ρS(t ′)

(
T l(q)

)†
f l (ε(q))

]
×U†

S (t ′).

US(t) = eiHSt/h̄ denotes the time evolution operator and f l (ε(q)) = {exp[ε(q)−
µl]+1}−1 indicates the Fermi function in the l lead at t = t0.
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