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Abstract

The transport through a quantum wire is investigated with an embedded time-

periodic Gaussian-shaped potential, a static single Quantum Point Contact and a double

Quantum Point Contact with and without a homogeneous perpendicular magnetic field.

A mixed momentum-coordinate representation is used to obtain a coupled integral

equation called the Lippmann-Schwinger equation. Numerical calculations are used

to solve this equation which couples both the subbands and the sidebands in the

system. The Landauer-Büttiker formalism is then used to calculate the conductance of

the system. The numerical results show dip-and-peak structures in the conductance in

the time-dependent case when the incident electrons can make inelastic transitions to a

subband edge. They also show result obtained in the static case such as quasi-bound

states, mode mixing, Aharonov-Bohm oscillations and edge states in a magnetic field.

Ágrip

Flutningur rafeinda í gegnum skammtavír með Gaussísku mætti sem er lotubundið

í tíma, tíma-óháða punktsnertu og tvöfalda punktsnertu með og án einsleitu segulsviði

hornréttu á vírinn er rannsakað. Notast er við blandaða hverfiþunga-rúm framsetningu til

þess að fá heildis-jöfnu sem kallast Lippmann-Schwinger jafna. Tölulegum útreikningum

er beitt til þess að leysa jöfnuna sem tengir saman bæði undirborða og hliðarborða

vírsins. Landauer-Büttiker framsetningin er síðan notuð til að reikna leiðnina í gegnum

kerfið. Útreikningarnir sýna bæði dali og hóla í leiðninni í tíma-háða tilvikinu þegar

rafeindir í vírnum lenda í ófjaðrandi árekstrum við mættið. Þeir sýna einnig hegðun

sem sjást í tíma-óháðum reikningum eins og hálf-bundin ástönd, blöndun undirborða,

Aharonov-Bohm sveiflur og jaðar-ástönd í segulsviði.



If I have seen farther than others, it has
been by standing on the shoulders of giants.

Sir Isaac Newton.
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CHAPTER 1
Introduction

Electronic devices today are getting smaller and smaller while at the same time there

are demands that they use less power and have more functionality. Manufacturers have

so far been able to keep up with these demands by making the elements that make up

such devices smaller. This miniaturisation process is not without its flaws, when the

size of the circuit elements starts approaching the atomic scale quantum effects become

more important. There will come a point where it is no longer possible to continue this

miniaturisation of existing semiconductor devices and new devices must be made from

the ground up. These new devices must be modeled using quantum mechanics in order

to take into account the quantum effects.

Low-dimensional devices are structures that are confined in one, two or three dimensions.

This confinement gives rise to discrete energy bands in the direction of the confinement,

usually referred to as subbands. Quantum effects such as this are an inherit part of these

nanostructures, but in order to see the full wave nature of the electrons they must be cooled

to sufficiently low temperatures. With today’s refrigeration technology it is no problem

to cool these devices to sufficiently low temperatures and interesting quantum effects

have been predicted and observed in transport through such structures. One such effect

is scattering between subbands [1] in a quantum wire with embedded static potentials.

The subbands can either be propagating or non-propagating if the corresponding wave-

vector is real or imaginary respectively. Scattering can occur into both propagating or

non-propagating modes which are then evanescent [2]. Many more effects have been

observed that can change the transport through the structure, such as Aharonov-Bohm

oscillations in a magnetic field [3] and quasi-bound states in quantum dots [4].
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1. Introduction

Inelastic scatterings can also be introduced with time-dependent potentials. When the

Hamiltonian is time dependent the system is no longer a conservative one, i.e. conservation

of energy is broken. It turns out that when working with a periodic Hamiltonian that

energy is gained and lost in discreet quantum [5] of h̄ω, where ω is the frequency of the

potential. This introduces sidebands to the energy spectrum as the electrons can have

energies E0 ± mh̄ω, where m is the sideband index and E0 the incident energy. Such

systems are of great interest because of their ability to pump a certain number of electrons

through the system during one period. This quantisation of the particle transport is not

new and was first thought of by Thouless [6] in 1983. This field is generally referred to

as Quantum Pumping and may have many applications in Quantum Computing and

Quantum Information processing where a certain number of electrons is required to

perform a given task.

If one wants to manufacture a low-dimensional device the usual starting point is a

two-dimensional electron gas (2DEG). A 2DEG can be made at the interface of a

GaAs/Ga1−xAlxAs heterostructure [7] as seen in Fig. 1.1. It is possible to grow such

structures one atomic layer at a time using techniques such as Atomic Layer Deposition

(ALD) or molecular beam epitaxy (MBE). The confinement and other potentials can then

be electrostatically induced by use of gates deposited on top of the heterostructure.

GaAs

Ga1−xAlxAs (Si doped)

Substrate

GaAs
2DEG

FIG. 1.1: GaAs/Ga1−xAlxAs heterostructure used to make a 2DEG.
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CHAPTER 2
Theory

This chapter explains the basic theory behind electron transport through a quantum wire

with embedded potentials that are both static and time-harmonic. The first section is a

general discussion about transport in quantum wires and shows how the conductance

can be calculated using the Landauer-Büttiker formula. In the next section the Lippmann-

Schwinger scattering formalism is used to find an equation for the wave function of

the system. The third section show how the transmission coefficients that are needed

to calculate the conductance with the Landauer-Büttiker formula are found from the

asymptotic form of the wave function. The chapter then concludes with a discussion on

the form of the potential and its effects on the transport.

2.1 Transport in Quantum Wires

The usual setup for quantum wires is a sample connected to two electron reservoirs, a

drain and source via leads. This setup can be seen in Fig. 2.1, where we have the source

on the left, the drain on the right, and in the middle a scattering potential which we will

assume is time-dependent. The electrons will be fed into the sample from the source on

M

V(x, y, t)L R
i

r
t

y

x

FIG. 2.1: The standard geometry for quantum wires. Two contacts, source (L) and drain (R),
connected to a sample (M).
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2. Theory

the left where they travel along the lead in the x-direction to the scattering area (M) in

the middle. There they are either scattered back into the source or transmitted into the

drain. The electrons will be confined in the y-direction by a confinement potential. This

confinement gives rise to eigenstates φn(y) that are solutions to the eigenvalue equation[
− h̄2

2m∗
d2

dy2 + Vc(y)

]
φn(y) = Enφn(y) , (2.1)

where Vc(y) is the confinement potential that we will leave unspecified for the time being.

In the leads far away from the scattering region the scattering potential will be zero and

the wave function will be a solution of the equation

ih̄
∂

∂t
ψ(x, y, t) =

[
− h̄2

2m∗
∇2 + Vc(y)

]
ψ(x, y, t) (2.2)

We shall expand the time-depended part of the wave function in a Fourier series with

frequency ω,

ψ(x, y, t) = ∑
m

ψm(x, y)ei(E0/h̄+mω)t , (2.3)

where we have added a global phase-factor ei(E0/h̄)t to represent the total energy of the

incident electron. The index m has a physical meaning if the potential is time-harmonic [5]

and is generally referred to as the sideband index. It labels the possible states that electrons

can be inelastically scattered into, these states are usually called sidebands. It can be easily

seen that ψm(x, y) is a solution of the equation[
− h̄2

2m∗

(
∂2

∂x2 +
∂2

∂y2

)
+ Vc(y)

]
ψm(x, y) = (E0 + h̄mω)ψm(x, y) . (2.4)

We now expand ψm(x, y) in the eigenfunctions of the confinement potential

ψm(x, y) = ∑
n

ϕm
n (x)φn(y) , (2.5)

where ϕm
n (x) are the coefficients of the expansion. It should now be obvious from Eq. (2.4)

that the expansion coefficients are just the eigenfunctions for a free particle in the x-direction

with coefficient that depend on n and m,

ψ(x, y, t) = ∑
m

∑
n

cm
n ei(E0/h̄+mω)te±ikm

n xφn(y) . (2.6)

Here km
n is the wave-vector for the propagation in the x-direction given by

h̄2(km
n )2

2m∗
= E + h̄mω− En , i.e. km

n =

√
2m∗

h̄2 (E + h̄mω− En) . (2.7)

Figure 2.2 is a graphical description of Eq. (2.7) and shows the possible scatterings

4



2.1. Transport in Quantum Wires

n = 0n = 1n = 2

E0 + h̄ω

E0

E0 − h̄ω

m = 1

m = 0

m = −1
|t−1

00 |2

|t0
00|2

|t1
10|2

|t1
00|2

FIG. 2.2: A graphical representation of the dispersion relation in the leads.

processes for a particle incoming in the lowest subband and sideband m = 0. A scattering

between two points on the same line are elastic while jumps between different lines

represent inelastic scattering that are induced by a time-dependent potential. An elastic

jump can result in an evanescent mode as can be seen from Eq. (2.7). If En is changed

in such a way that E + h̄mω < En with m fixed, then the resulting wave-vector will be

imaginary, resulting in an evanescent state that decays exponentially into the leads.

Finding the wave function in the scattering region can be a difficult task and must usually

by done numerically, as it depends on the scattering potential. However, in order to

discuss the conductance through the system we do not need to know the exact form of

the scattering wave function. We will therefore discuss its derivation later in the chapter.

The total wave function of the system will have the form

ΨE(x, y, t) =


∑m ∑n

{
am

n ei(E0/h̄+mω)teikm
n xφn(y) + bm

n ei(E0/h̄+mω)te−ikm
n xφn(y)

}
, (x, y) ∈ L ,

ΨM, E(x, y, t), (x, y) ∈ M,

∑m ∑n

{
cm

n ei(E0/h̄+mω)te−ikm
n xφn(y) + dm

n ei(E0/h̄+mω)teikm
n xφn(y)

}
, (x, y) ∈ R ,

(2.8)

where am
n , bm

n , cm
n and dm

n are unknown coefficients. We now define a scattering state

ψn(x, y, t) =


ei(E0/h̄)teik0

nxφn(y) + ∑m′ ∑n′ rm′0
n′n ei(E0/h̄+m′ω)te−ikm′

n′ xφn′(y) , (x, y) ∈ L ,

ψM, E(x, y, t), (x, y) ∈ M,

∑m′ ∑n′ tm′0
n′n ei(E0/h̄+m′ω)teikm′

n′ xφn′(y) , (x, y) ∈ R .

(2.9)

In the scattering state we have chosen to have an incoming wave (electron) from the left

with energy E0 in subband n. These waves or electrons scatter into subband n′ and sideband

m′ in either the left lead with probability |rm′
n′n|

2 or the right one with probability |tm′
n′n|

2.

These coefficients are usually called reflection (rm′
n′n) and transmission (tm′

n′n) coefficient as

they determine the probability for reflection and transmission.

The Landauer-Büttiker formula connects the transmission coefficients to the conductance of

the system. It states that each subband should contribute a factor 2e2

h Tn to the conductance,

5



2. Theory

hence in our case the conductance is given by

G(µ) =
2e2

h ∑
m′

Tr
[
(tm′)†tm′

]
, (2.10)

where tm′ is the matrix equivalent of the transmission coefficients (tm′
n′n) ,

tm′ =



tm′
11 tm′

12 . . . tm′
1n

tm′
21

. . .
...

...
. . .

...

tm′
n′1 . . . . . . tm′

n′n


. (2.11)

2.2 The Lippmann-Schwinger Equation

In this section we aim to find the so called Lippmann-Schwinger equation for the wave

function. We extend the Lippmann-Schwinger approach to include time-periodic potentials

and keep it general to be able to apply it to any reasonable localised potential. When the

wave function for the system has been found we can read from the asymptotic form the

transmission and reflection coefficients and use them to calculate the conductance of the

system with Eq. (2.10).

Our starting point is the two-dimensional time-dependent Schrödinger equation

ih̄
∂

∂t
Ψ(x, y, t) = H(t)Ψ(x, y, t) , (2.12)

where the Hamiltonian is given by

H(t) =
p2

2m∗
+ Vc(y) + V(x, y, t) .

Here Vc(y) is the confinement potential which we choose to be parabolic and V(x, y, t) is

a general time-periodic potential that we will leave unspecified for now.

We want to have a homogeneous magnetic field in the z-direction. We will therefore have

to choose a gauge and replace the momentum operator with the effective momentum

operator in a magnetic field,

px = −ih̄
∂

∂x
→ πx = −ih̄

∂

∂x
+ eAx .

The gauge we choose is the Landau gauge where ~A = −By~x, giving us

ih̄∂tΨ(x, y, t) =

{
− h̄2

2m∗

(
∇2 − 2i

l2 y∂x −
y2

l4

)
+

1
2

m∗Ω2
0y2 + V(x, y, t)

}
Ψ(x, y, t) . (2.13)

The constant l is called the magnetic length and is given by

l2 =
h̄

eB
.

6



2.2. The Lippmann-Schwinger Equation

Equation (2.13) is coupled in the x- and y-direction, but we do expect to be able to separate

the equation in momentum-coordinate space [8] because the wire is homogeneous in the

x-direction. Therefore, we do a Fourier transform with respect to the x-coordinate of the

wave function,

Ψ(x, y, t) =
∫ dp

2π
eipxΨ(p, y, t) , Ψ(p, y, t) =

∫
dx e−ipxΨ(x, y, t) . (2.14)

Inserting the above into the Schrödinger equation and then transforming the equation

with ∫
dx e−iqx ,

we obtain an equation for the Fourier transformed wave function

ih̄∂tΨ(q, y, t) =

{
− h̄2

2m∗

(
∂2

y − q2 +
2q
l2 y− y2

l4

)
+

1
2

m∗Ω2
0y2

}
Ψ(q, y, t)

+
∫ dp

2π
V(q− p, y, t)Ψ(p, y, t) , (2.15)

where

V(q− p, y, t) =
∫

dx e−i(q−p)x V(x, y, t) . (2.16)

By completing the square we can combine the effective momentum operator and the

confinement potential which then allows us to write the Schrödinger equation in the form

ih̄∂tΨ(q, y, t) =

{
− h̄2

2m∗
∂2

y +
1
2

m∗Ω2
ω(y− y0)2 + K(q)

}
Ψ(q, y, t)

+
∫ dp

2π
V(q− p, y, t)Ψ(p, y, t) , (2.17)

We have collected together the terms for the magnetic field and the confinement potential to

obtain an effective confinement potential1 in a magnetic field with strength Ω2
ω = ω2

c + Ω2
0

and center coordinate y0 = h̄qωc
m∗Ω2

ω
. This was made possible by our careful choice of gauge.

We have also defined

K(q) =
(h̄Ω0)2

(h̄Ωω)2
h̄2

2m∗
q2,

this term is the effective kinetic energy in the x-direction1 in a magnetic field.

The next step is to expand the wave function in terms of eigenfunctions of a pure quantum

wire1 with a parabolic confinement in a magnetic field,

Ψ(p, y, t) = ∑
r

φr(y, p)ψr(p, t) . (2.18)

1See appendix A
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2. Theory

Using this expansion in Eq. (2.17) and exploiting the orthonormal relation of the eigen-

functions we get a quasi-1D equation for the coefficients of the expansion

ih̄∂tψn(q, t) = En(q)ψn(q, t) + ∑
r

∫ dp
2π

Vnr(q, p, t)ψr(p, t) , (2.19)

where En(q) = En + K(q) = (n + 1
2 )h̄Ωω + h̄2q2

2m∗
(h̄Ω0)2

(h̄Ωω)2 and

Vnr(q, p, t) =
∫

dy φ∗n(y, q)V(q− p, y, t)φr(y, p) . (2.20)

Equation (2.19) is a coupled non-local integral equation in momentum-space. So far its

derivation has been identical to the static case and if we were to replace the time derivative

on the left hand side with the total energy of the system it would be identical to the

equation for the static case [3].

We know that time-dependent potentials induce inelastic scattering, furthermore we know

that time-harmonic potentials induce sidebands [5]. For this reason we expand the time

part of the wave function in Fourier series with frequency ω,

ψn(q, t) = e−i(E0/h̄)t
m′=∞

∑
m′=−∞

e−im′ωtψm′
n (q) =

m′=∞

∑
m′=−∞

e−i(E0/h̄+m′ω)tψm′
n (q) , (2.21)

and do the same for the potential,

Ṽnr(q, p, t) =
s=∞

∑
s=−∞

e−isωtVs
nr(q, p) . (2.22)

The summation index (m) labels the sidebands caused by inelastic scattering. In Eq. (2.21)

we have added a phase factor to include the incident energy of the electron. In our

derivation this factor has to be put in by hand, if we however would have used Floquet

theory2 it would have come naturally. After we insert the Fourier series in Eq. (2.21)

and (2.22) into Eq. (2.19) and exploit the orthonormal relations of the exponential functions

we obtain an equation for the Fourier components of the wave function

{E0 + h̄mω− En − K(q)}ψm
n (q) = ∑

m′r

∫ dp
2π

Vm−m′
nr (q, p)ψm′

r (p) . (2.23)

By rearranging the terms on the left hand side and defining the wave-vector (km
n ) as

1
2

(
km

n
β

)2 h̄2Ω2
0

h̄Ωω
= E0 + h̄mω− (n +

1
2
)h̄Ωω , (2.24)

we can write Eq. (2.23) as{(
km

n
β

)2
−
(

q
β

)2
}

ψm
n (q) = ∑

m′r

∫ dp
2π

V̂m−m′
nr (q, p)ψm′

r (p) , (2.25)

2See appendix C
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2.3. Transmission Coefficient

where

V̂m−m′
nr (q, p) = 2

(h̄Ωω)2

(h̄Ω0)2
β

h̄Ωω
Vm−m′

nr (q, p) . (2.26)

The constant β is the reciprocal of the effective magnetic length3 given by

β2 =
m∗Ωω

h̄
.

We can now define the Green’s function for the system from Eq. (2.25){(
km

n
β

)2
−
(

q
β

)2
}

Gm
n (q) = 1 , (2.27)

and we also define the incoming wave as{(
km

n
β

)2
−
(

q
β

)2
}

ψm,0
n (q) = 0 . (2.28)

Using Eq. (2.27) and (2.28) we can write down the Lippmann-Schwinger equation for the

Fourier components of the wave function

ψm
n (q) = ψm,0

n (q) + Gm
n (q) ∑

m′ r

∫ d(p/β)
2π

V̂m−m′
nr (q, p)ψm′

r (p) . (2.29)

2.3 Transmission Coefficient

Equation (2.29) is a coupled integral equation for the Fourier components of the wave

function. If we could solve it we would be able to find the full wave function of the system

by working our way backwards using Eqs. (2.21) and (2.18). However, Eq. (2.29) has to

be solved numerically and attacking it directly is difficult, because in Fourier space the

incoming wave is a delta function. To remedy this issue we assume an operator T, of the

resolvent type such that

ψ = (1 + GT)ψ0 . (2.30)

We have written the equation in operator form to suppress the sums and integrals for

clarity and have defined the operator T as

T = V + VGT , (2.31)

this operator could be used to supply the Von Neumann series, but instead we solve here

Tm′m
n′n (q, p) = Vm′−m

n′n + ∑
rs

∫ dk
2π

Vm′−s
n′r (q, k)Gs

r(k)Tsm
rn (k, p) (2.32)

3See appendix A
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2. Theory

directly. The above equation for the T-matrix is also a coupled integral equation like

Eq. (2.29), but has the advantage of being more easily solved numerically.

Now that we have an equation that we can deal with numerically4 we want to find the

full wave function of the system in terms of the T-matrix. Equation (2.30) is a relationship

between the T-matrix and the Fourier components of the wave function and writing it out

we get

ψm′
n′ (q) = ψm′ ,0

n′ (q) + Gm′
n′ (q) ∑

rs

∫ dk
2π

Tm′s
n′r (q, k)ψs,0

r (k) . (2.33)

By using Eqs. (2.21), (2.18) and (2.14) we can find an expression for the full wave function

of the system

Ψ(x, y, t) = Ψ0(x, y, t) + ∑
n′m′

∫ dq
2π

φn′(q, y)e−i(E0/h̄+m′ω)teiqxGm′
n′ (q)Tm′0

n′n (q, k0
n) . (2.34)

The incoming wave (Ψ0(x, y, t)) has been chosen to enter the system in subband n and

sideband m = 0. To find the transmission coefficient we need to calculate the integral in

Eq. (2.34). The Green’s function in the integral gives two poles that we must handle using

complex integration. We start by rewriting the integral as

Ψ(x, y, t) = Ψ0(x, y, t)− ∑
n′m′

∫ dq
2π

eiqx

(q− km′
n′ )(q + km′

n′ )
φn′(q, y)e−i(E0/h̄+m′ω)tTm′0

n′n (q, k0
n) .

(2.35)

Then by taking only the contribution of the pole that gives a wave travelling in the

+x-direction we obtain by using residue integration

Ψ(x, y, t) = Ψ0(x, y, t)− ∑
n′m′

1
2km′

n′
eikm′

n′ xφn′(km′
n′ , y)e−i(E0/h̄+m′ω)tTm′0

n′n (km′
n′ , k0

n) , (2.36)

and from this expression we see that the transmission coefficient is given by

tm′0
n′n = δn′nδm′0 −

i
2km′

n′
Tm′0

n′n (km′
n′ , k0

n) . (2.37)

When the T-matrix has been calculated numerically we can use Eq. (2.10) to find the

conductance of the system.

2.4 The Potential

We have been able to develop a whole model for transport through a quantum wire

without saying much about the form of the potential. We have only assumed that it

depends on (x, y) and t. There are some interesting and important consequences if the
4Appendix D details the preparation for the numerical calculations.
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potential is independent of one or more of these variables. An examination of Eq. (2.20)

is worthwhile because it takes on the role of a coupling constant in Eq. (2.19) that

couples together different subbands. This equation gives selection rules for jumps between

different subbands. An interesting case arises when the potential is independent of y

as then the potential can be taken outside the integral and the orthogonality relation of

the basis forbids jumps between different subbands. Therefore, in the case of potential

that is homogeneous in the y-direction inter-subband transitions are forbidden and only

intra-subband transitions are allowed. The details of the calculations of the integral in

equation (2.20) can be seen in appendix B.

Equation (2.19) is also interesting because the potential is no longer local. In other words

the interactions at one point depend on the value of the potential at all points in space.

This is interesting because we began with a potential that was local, but the magnetic field

with its Lorentz force have transformed the action of the potential into the non-local form.

Another interesting thing is that the sum in the equation runs over all subbands, not just

the propagating ones and thus evanescent mode cannot be neglected [2].

We would now like to define the potential and examine what consequences its form has

on the system. Let us consider the potential

V(x, y, t) = Vs(x, y) + Vt(x, y) cos(ωt) , (2.38)

i.e. a static potential plus a part that fluctuates harmonically in time with the frequency

ω. By use of Eqs. (2.20) and (2.16) we have

Vn′n(q, p, t) = Vs, n′n(q, p) + Vt, n′n(q, p) cos(ωt) . (2.39)

Expanding the potential in a Fourier series with the same fundamental frequency as is

done with the potential in Eq. (2.22) gives selection rules between the sidebands,

Vm
n′n(q, p) = Vs, n′n(q, p)δm,0 +

1
2

Vt, n′n(δm,−1 + δm,1) . (2.40)

Inserting the above equation into Eq. (2.32) for the T-matrix yields

Tm′m
n′n (q, p) = Vs,n′n(q, p)δm′−m,0 +

1
2

Vt,n′n(q, p)(δm′−m,−1 + δm′−m,1)

+ ∑
r

∫ dk
2π

Vs,n′r(q, k)Gm′
r (k)Tm′m

rn (k, p)

+
1
2 ∑

r

∫ dk
2π

Vt,n′r(q, k)Gm′+1
r (k)T(m′+1) m

rn (k, p)

+
1
2 ∑

r

∫ dk
2π

Vt,n′r(q, k)Gm′−1
r (k)T(m′−1) m

rn (k, p) . (2.41)

The equation for the T-matrix couples together adjacent sidebands because of the harmonic

term in the potential and intra-sideband transitions occur because of the static part of the

potential.
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CHAPTER 3
Numerical Results

The previous chapter discussed the theoretical framework for a quantum wire with a

potential that is periodic in time. This framework laid down the groundwork for numerical

calculations of such systems. Equation (2.41) was the main result and in appendix D it

is shown how it is prepared for numerical evaluation. The main focus of this thesis will

be to investigate transport through Quantum Point Contacts (QPCs). Such systems are

expected to have a rich structure in the conductance for a variety of reasons.

In the numerical calculations the wire is taken to be that in a high-mobility (µe ∼

104 − 106 cm2/Vs) GaAs/Ga1−xAlxAs heterostructure, such as the one in Fig. 1.1. The

electron density is ns ∼ 4× 1011 cm−2 with an effective electron mass of m∗ = 0.067me.

The confinement potential is fixed at h̄Ω0 = 1.0 meV. Energies have been scaled using

h̄Ωω the effective strength of the confinement potential in a magnetic field, except the

strength of the potentials which are fixed in meV and can be compared with the relevant

energy scales in Tbl. I. Lengths have been scaled using β, the reciprocal of the effective

magnetic length. Length parameters for the potentials have been defined in units of β−1
0

(≈ 33.72 nm) the effective length at zero magnetic field.

3.1 Simple Time-Periodic Potentials

Simple time-harmonic potentials and their effects on the conductance have been investigated

before [10–12]. These investigation have been limited by the use of delta functions or

potentials with sharp edges. Presented here are calculations for a potential that varies

smoothly over the wire. The fundamental results should be the same but effects from

artificial sharp boundaries should not be present. These calculations should be closer to
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3. Numerical Results

experimental results since potentials are usually created electrostatically in experiments

and hence vary smoothly.

3.1.1 Time-Harmonic Gaussian

Starting with a simple smooth time-harmonic Gaussian with the form

V(x, y, t) = V0e−αx x2−αyy2
cos(ωt) ,

where the parameters are

V0 = 0.8 meV, αx = 3.5β2
0, αy = 3.5β2

0, ω/Ωω = 0.17 .

In Fig. 3.2 the conductance of a wire with the above potential embedded is compared

with an ideal wire and a wire with a static attractive Gaussian with the same parameters.

It can be seen in the figure that the conductance of the time-modulated potential is higher

Time-Harmonic Gaussian
Static Attractive Gaussian

Ideal Wire
0

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5

G
/

G
0

E/h̄Ωω

FIG. 3.1: The conductance of the time-harmonic Gaussian-shaped potential compared to a static
attractive Gaussian potential with the same parameters without a magnetic field.

than in the static case for most values of the incident energy. The time-averaged height

of an oscillating barrier is lower than the height of a static barrier, which consequently

allows more transmission to occur. The dip seen in second subband in the conductance of

the attractive static Gaussian is not observed in the time-dependant case. This is because

in the time-dependent case the Gaussian fluctuates between being attractive (well) and

repulsive (hill).

A new feature seen in the oscillating case are dips and peaks in the conductance. These

dip and peak structures appear just before the opening of a new conduction channel and

14



3.1. Simple Time-Periodic Potentials

are of a similar nature to the dip seen in the second subband for the static barrier [10]. The

dips and peaks occur at integer multiples of ω away from a subband edge as can be seen

in Fig. 3.2. At these energies the electrons can make inelastic transitions to a quasi-bound

state at the subband edge similar to the case of the attractive static barrier [1].

Time-Harmonic Gaussian
0

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5

G
/

G
0

E/h̄Ωω

∆E = ω

∆E = 2ω

∆E = ω

a b c

d

FIG. 3.2: The conductance of the time-harmonic Gaussian potential without a magnetic field.

In Fig. 3.3 the probability density at the energies indicated in Fig. 3.2 can be seen. The

beating pattern seen in the figures is due to a summation of waves with different energies

(phases). This can be seen most clearly at the points closest to the opening of the new

conduction channels such as in Fig. 3.3a, 3.3b and 3.3d because at these points inelastic

scattering is expected. Further away from the opening of conduction channels inelastic

scattering is expected to become less frequent and conductance should approach the static

case. The probability density seen in Fig. 3.3c at a point far away from the opening of an

inelastic conduction channel looks similar to that seen in the static case [1].

Figure 3.4 shows the conductance in a magnetic field. The conductance is higher in a

magnetic field because the Lorentz force pushes the electrons into the wall away from the

Gaussian potential in the middle of the wire. An inset in Fig. 3.4 shows an enlargement

of the conductance at the second peak-dip structure. The magnetic field turns the peak

there into a dip and at even higher magnetic fields it disappears.

The first dip can also by reversed and turned into a peak by making the Gaussian-shaped

potential very wide in the x-direction. In Fig. 3.5 the conductance of the time-harmonic

Gaussian is compared to a time-harmonic Gaussian that has been made very wide in the

x-direction, i.e. αx = 0.1 while other parameters are kept the same. When potential is
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(a) Point a (E/h̄Ωω = 0.67, n = 0).
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(b) Point b (E/h̄Ωω = 0.84, n = 0).
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(c) Point c (E/h̄Ωω = 1.3, n = 0).
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(d) Point d (E/h̄Ωω = 1.67, n = 1).

FIG. 3.3: The probability density for the simple time-harmonic Gaussian potential at the energies
indicated in Fig. 3.2.
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FIG. 3.4: The conductance of the time-harmonic Gaussian in a magnetic field.

made very wide it becomes easier to excite electrons out of the QBS. The dip therefore

turns into a peak because of the opening of a new conduction channel.
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Time-Harmonic Gaussian
Wide Time-Harmonic Gaussian

0

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5

G
/

G
0

E/h̄Ωω

FIG. 3.5: The conductance of the time-harmonic Gaussian compared with the conductance of a
narrow time-harmonic Gaussian.
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3.1.2 Time-Harmonic Well

Another system of interest is a well with a bottom that oscillates in time. The potential

has the form

V(x, y, t) = Vse−αx x2−αyy2
+ Vte−γx x2−γyy2

cos(ωt) ,

where

Vs = −0.4 meV, αx = 3.5β2
0, αy = 0.5β2

0 ,

Vt = 0.3 meV, γx = 10.0β2
0, γy = 10.0β2

0, ω/Ωω = 0.17 .

A cross-section of this potential at its maximum and minimum can be seen in Fig. 3.6

and in Fig. 3.7 the conductance of this system is shown. The most noticeable feature in

x

V(x, t)

FIG. 3.6: A cross-section of the time-harmonic well at its maximum (dashed) and minimum
(solid) amplitude.

the conductance is the Fano resonance in the first subband. The probability density at

the point marked a (E/h̄Ωω = 0.5289) in Fig. 3.7 can be seen in Fig. 3.8, and Fig. 3.9

shows the probability density at the point marked b (E/h̄Ωω = 0.5299). The evolution of

the probability density is shown over approximately one period, taken at equally spaced

intervals in time. The probability density in Fig. 3.8 does not change much over time. The

electron seems to be stuck in the well and the system has low conductance. The opposite

is seen in Fig. 3.9, the electron seems to fall into the well (Fig. 3.9d), stay there for a short

period (Fig. 3.9a) and then leave (Fig. 3.9b) and a new one enters the well (Fig. 3.9d). This

process is due to inelastic scattering. The electron loses energy when it falls into the well

and gains energy when it climbs out again.

The dip at the end of the second subband (marked d in Fig. 3.7) is also interesting. This dip

is due to backscattering by a quasi-bound state originating from an evanescent mode, i.e.

a coupling of the first and the third subbands. This dip also appears in the static case [1]

and can be seen in Fig. 3.7 for the static attractive Gaussian. A snapshot of the probability

density at this dip can be seen in Fig. 3.10 along with the probability density at the dip
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Time-Harmonic Well
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FIG. 3.7: The conductance of the well with an oscillating bottom without a magnetic field.

marked c in Fig. 3.7, which is located approximately ω away from the nearest subband

edge. As mentioned in the previous section these dips are of a similar nature and the

probability densities are quite similar, i.e. they both show coupling to an evanescent mode

in the third subband. The main difference between the two dips is that the dip marked c

is due to inelastic scattering while the dip marked d is the result of elastic scattering.
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(a) tΩω = 0.00 (t = 0.00 ps).
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(b) tΩω = 8.87 (t = 5.84 ps).
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(c) tΩω = 18.11 (t = 11.92 ps).
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(d) tΩω = 27.35 (t = 18.00 ps).
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(e) tΩω = 36.59 (t = 24.08 ps).

FIG. 3.8: The probability density over approximately one period at the point marked a in Fig. 3.7.
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(a) tΩω = 0.0 (t = 0.00 ps).
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(b) tΩω = 8.87 (t = 5.84 ps).
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(c) tΩω = 18.11 (t = 11.92 ps).
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(d) tΩω = 27.35 (t = 18.00 ps).
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(e) tΩω = 36.59 (t = 24.08 ps).

FIG. 3.9: The probability density over approximately one period at the point marked b in Fig. 3.7.
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(a) Point c (E/h̄Ωω = 2.319, n = 0).
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(b) Point c (E/h̄Ωω = 2.319, n = 1).
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(c) Point d (E/h̄Ωω = 2.489, n = 0).
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(d) Point d (E/h̄Ωω = 2.489, n = 1).

FIG. 3.10: Probability density at the points marked c and d in Fig. 3.7.
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3.2. Quantum Point Contact

3.2 Quantum Point Contact

Quantum Point Contacts (QPCs) have received much attention since it was discovered

that their conductance is quantised [13]. A QPC is essentially a constriction and a lot of

attention has been given to the step that forms in the bottleneck of the constriction [14].

This step is indeed important when there is no magnetic field and the incident wave is

in the first subband, because then the wave is centred and scatters mostly on the step.

However, when the incident wave is no longer in the first subband or is in a magnetic

field extended parts of the geometry will become more important. Presented here are

calculations for processes in the first two subbands in a quantum wire with and without

a magnetic field. In the numerical calculations the first eight subbands were taken into

account.

Starting with a static QPC made up of two Gaussian potentials,

V(x, y) = V1e−αx x2−αy(y−y1)2
+ V2e−γx x2−γy(y−y2)2

, (3.1)

with the parameters,

V1 = 6.5 meV, αx = 0.5β2
0, αy = 0.3β2

0, y1 = 3β0,

V2 = 6.5 meV, γx = 0.5β2
0, γy = 0.3β2

0, y2 = −3β0 .

This system can be seen in Fig. 3.11. The minimum height of the step in the middle of the
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FIG. 3.11: A plot of the single Quantum Point Contact (QPC) embedded in a wire with a
parabolic confinement.

Gaussian peaks is about 0.9 meV. The conductance without a magnetic field is presented

in Fig. 3.12. The conductance shows quantised steps that are lower than the quantised

steps of an ideal wire due to scattering from the constriction. The conductance of the

QPC also has a smooth opening due to tunnelling trough the smoothly varying potential

and at higher energies the conductance starts to become linear.
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FIG. 3.12: The conductance through the QPC without a magnetic field.
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FIG. 3.13: Evolution of the conductance through the QPC in a magnetic field.

B l [nm] 1/β [nm] lβ h̄ωc [meV] h̄Ωω [meV]
0.0 ∞ 33.72 nm ∞ 0.0 meV 1.0 meV
0.5 36.29 nm 29.33 nm 1.24 0.86 meV 1.32 meV
1.0 25.66 nm 23.87 nm 1.07 1.72 meV 2.00 meV
1.5 20.95 nm 20.23 nm 1.04 2.59 meV 2.78 meV
2.0 18.14 nm 17.78 nm 1.02 3.46 meV 3.60 meV

Table I: Comparison of the magnetic length scales.
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3.2. Quantum Point Contact

Figure 3.13 shows the conductance of the QPC in a magnetic field. Plateaus begin to form

in high magnetic fields and the conductance starts to approach the step like conductance

of an ideal wire. In Fig. 3.14 the probability density at a fixed energy (E/h̄Ωω = 1.32) can
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(a) E/h̄Ωω = 1.32, n = 0, B = 0.0 T
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(b) E/h̄Ωω = 1.32, n = 0, B = 0.5 T
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(c) E/h̄Ωω = 1.32, n = 0, B = 1.0 T
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(d) E/h̄Ωω = 1.32, n = 0, B = 2.0 T

FIG. 3.14: Probability density in the QPC at a fixed energies for different values of the magnetic
field.

be seen for a few values of the magnetic field. At low magnetic fields (Fig. 3.14a and 3.14b)

we can clearly see interference due to scattering in the probability density, but at higher

values (Fig. 3.14c and 3.14d) the interference disappears and we have an edge state. In

those states the electrons follow the equipotential lines of the potential. Table I shows a

comparison of the different length scales present in a magnetic field. As the magnetic field

increases the effective length scales become smaller and the potential becomes smooth

on the scale of the magnetic length. Backscatterings also become less frequent due less

overlapping of the edge states at the two edges as the magnetic length decreases.
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3. Numerical Results

3.3 Double Quantum Point Contact

A double QPC is made up of two QPCs in series. Such a double QPC system forms a

cavity between the QPCs that can trap electron in quasi-bound states (QBS). This cavity is

also important in magnetic fields as electrons can execute a cyclotron motion inside it. A

device such as this could be used as an interferometer [15–17].

3.3.1 Static Double Quantum Point Contact

A static double QPC has the following form

V(x, y) = V1e−αx(x−x1)2−αy(y−y1)2
+ V2e−γx(x−x2)2−γy(y−y2)2

+ V3e−ηx(x−x3)2−ηy(y−y3)2
+ V4e−νx(x−x4)2−νy(y−y4)2

, (3.2)

with the parameters,

V1 = 6.5 meV, αx = 0.5β2
0, αy = 0.3β2

0, x1 = 8β0, y1 = −3β0,

V2 = 6.5 meV, γx = 0.5β2
0, γy = 0.3β2

0, x2 = 8β0, y2 = 3β0,

V3 = 6.5 meV, ηx = 0.5β2
0, ηy = 0.3β2

0, x3 = −8β0, y3 = −3β0,

V4 = 6.5 meV, νx = 0.5β2
0, νy = 0.3β2

0, x4 = −8β0, y4 = 3β0 .

In Fig. 3.15 we see this system embedded in a wire. The potentials have been placed
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(b) 3D plot.

FIG. 3.15: A plot of the double QPC embedded in a wire with a parabolic confinement.

into the walls of the wire in such a way that electrons cannot pass between the walls and

the Gaussian peaks, but must go over the step between the peaks which has a minimum

height of 0.9 meV in the center. This value can be compared with the relevant energy scales

in Tbl. I. The conductance through the system is presented in Fig. 3.16 without a magnetic

field. As expected the conductance shows a lot more structure than the single QPC, which
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3.3. Double Quantum Point Contact

Double QPC
Single QPC

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5

G
/

G
0

E/h̄Ωω

FIG. 3.16: The resonances in the conductance of the double QPC compared with the bound
states of a finite wire (black arrows) calculated with Eq. (A.18) (Lβ = 13.68). Also
shown for comparison is the conductance of the single QPC.

-30 -20 -10 0 10 20 30
xβ

-4
-3
-2
-1
0
1
2
3
4

yβ

|Ψ
(x

,y
)|

2

(a) Point a (E/h̄Ωω = 0.606).
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(b) Point b (E/h̄Ωω = 0.73315).
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(c) Point c (E/h̄Ωω = 0.903).

FIG. 3.17: Probability density for the resonances marked in Fig. 3.19a.
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3. Numerical Results

is shown for comparison. The resonances seen are quasi-bound states (QBS) inside the

cavity. This is confirmed by comparing the resonances with the calculated bound states

of an ideal finite wire (Eq. A.18) and also by examining the probability density at the

resonances, which are shown in Fig. 3.17. The bounds states calculated for a finite ideal

wire match the quasi-bound states in the wire at low energies but not at higher ones. This

was to be expected as the potential is smooth but not a hard wall as was assumed in

the case of the finite wire. The probability density for the second resonance is shown in

Fig. 3.17a, which shows two peaks inside the cavity. The wavelength can be calculated

by using the relation λ = 2π/|k| and Eq. (2.24). The distance between the two peaks

is about Lβ = 6.80 which compared with the wavelength λβ = 13.65 at E/h̄Ωω = 0.606

gives a ratio of λβ/Lβ = 2.01. Similarly the probability density for the third and fourth

resonances which are shown in Figs. 3.17b and 3.17c show three and four peaks inside the

cavity respectively. The distances between those peaks and the corresponding wavelength

also give a ratio of λβ/Lβ ≈ 2.0. In Fig. 3.18 the probability density at the resonances is

compared with the probability density in a finite wire with hard walls. A double QPC

has also been placed inside the finite wire with the same parameters. The main difference

between the two system is that the finite wire is a closed system with a discrete spectrum,

while the other is an open system with an continuous spectrum. The results from the

two systems are quite similar. The probability density of the finite wire is symmetrical

about the x-axis, but in the open system the symmetry is broken due to the incoming and

outgoing waves causing interference. The calculations for the finite wire were done by

Prof. Viðar Guðmundsson [18] at the Science Institute of the University of Iceland.

Figure 3.19 shows the conductance of the double QPC in a magnetic field ranging from

0.0 T to 2.0 T and the conductance of the single QPC is shown for comparison. The presence

of the second QPC does not lower the conductance significantly compared with the single

QPC but only adds on the resonances from the quasi-bound states and the interference

from the cyclotron motion of the electrons inside the cavity.

In Fig. 3.22 the conductance is shown as a function of the magnetic field. The energy

has been fixed at the points shown in Fig. 3.21. At higher energies (Figs. 3.22b, 3.22c

and 3.22d) the conductance is periodic as a function of the magnetic field, which is a clear

sign of AB oscillations [19, 20] in the system. The area enclosed by the circular path taken

by the electrons is related to the periodicity of the AB oscillations via the relation

A =
2π

∆B
h̄
e

. (3.3)

The period of the large oscillations in Fig. 3.22c is approximately ∆B = 0.5 T and ∆B =

0.02 T for the smaller oscillations seen in the inset of the figure. The larger oscillations thus
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3.3. Double Quantum Point Contact
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FIG. 3.18: Comparison of the QBS in a closed and an open system.

give an area of A ≈ 8100 nm2 which corresponds to a box with length l ≈ 2.6/β0. This

box fits fairly well inside the constriction of one of the QPCs as can be seen in Fig. 3.23a.

The smaller oscillations give an area of A ≈ 207000 nm2, which fits fairly well within

the cavity if we assume a box of size A ≈ 2.5/β0 × 7.25/β0 as in Fig. 3.23b. Figure 3.24

shows the paths taken by electrons causing the AB oscillations in the double QPC. An

incoming wave is partially reflected and transmitted at the first QPC and also on the

second QPC. This creates the circular path taken by the electrons inside the cavity (red

area), which cause the smaller AB oscillations. When the wave that reflects of the second
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Double QPC
Single QPC

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5

G
/

G
0

E/h̄Ωω

(c) B = 0.5 T.
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FIG. 3.19: Evolution of the conductance through the double QPC in a magnetic field.

QPC enters the constriction of the first QPC electrons can interfere with the incoming wave

by tunnelling from an edge state to another one on the opposite side in the constriction

(blue area), which causes the larger AB oscillations. These effects have been measured

experimentally in a single QPC [21] and also in a double QPC [13]. In most experimental

setups there is incoming wave both from the left and right. Here there is only an incoming

wave from the left and therefore the AB oscillations are not seen in the single QPC system.

The AB oscillations only happen inside the constriction of the first QPC because there the

reflected wave from the second QPC interferes with the incoming wave. It is interesting

to compare the paths taken by the electrons in Fig. 3.24 with the probability density seen

in Fig. 3.20 as the circular path can be seen clearly.
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(a) Point d (E/h̄Ωω = 2.152, n = 1, B = 1.0 T).
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(b) Point e (E/h̄Ωω = 2.225, n = 0, B = 1.0 T).
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(c) Point f (E/h̄Ωω = 2.259, n = 0, B = 1.0 T).

FIG. 3.20: Probability density for the peaks marked in Fig. 3.19d.
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FIG. 3.21: The conductance of the double Quantum Point Contact in a magnetic field of 1.0 T.
The points indicate energies where the conductance is plotted as a function of the
magnetic field in Fig. 3.22.
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h̄Ωω (B=1.0 T) = 1.9).
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FIG. 3.22: The conductance through the double QPC as a function of the magnetic field. The
absolute value of the energy is indicated in each sub-figure and marked in Fig. 3.21.
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FIG. 3.23: Area of the boxes for the AB oscillations in Fig. 3.22c.
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3.3. Double Quantum Point Contact

FIG. 3.24: The paths taking by electrons causing the AB oscillations in the double QPC.
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3.3.2 Time-Harmonic Double Quantum Point Contact

A time-harmonic double QPC

V(x, y, t) = Vs1e−αx(x−x1)2−αy(y−y1)2
+ Vs2e−γx(x−x2)2−γy(y−y2)2

+ Vs3e−ηx(x−x3)2−ηy(y−y3)2
+ Vs4e−νx(x−x4)2−νy(y−y4)2

+ Vt1e−αx(x−x1)2−αy(y−y1)2
cos ωt + Vt2e−γx(x−x2)2−γy(y−y2)2

cos ωt

+ Vt3e−ηx(x−x3)2−ηy(y−y3)2
cos ωt + Vt4e−νx(x−x4)2−νy(y−y4)2

cos ωt , (3.4)

with the parameters,

Vs1 = 6.0 meV, Vt1 = 0.5 meV, αx = 0.5β2
0, αy = 0.3β2

0, x1 = 8β0, y1 = −3β0,

Vs2 = 6.0 meV, Vt2 = 0.5 meV, γx = 0.5β2
0, γy = 0.3β2

0, x2 = 8β0, y2 = 3β0,

Vs3 = 6.5 meV, Vt3 = 0.0 meV, ηx = 0.5β2
0, ηy = 0.3β2

0, x3 = −8β0, y3 = −3β0,

Vs4 = 6.5 meV, Vt4 = 0.0 meV, νx = 0.5β2
0, νy = 0.3β2

0, x4 = −8β0, y4 = 3β0 ,

ω/Ωω = 0.17 .

This system is similar to the double QPC in seen in Fig. 3.15, except that now the first QPC

is oscillating in time. The oscillation has been kept small (∆V = 1.0 meV) to be able to

see the deviations from the static case. The conductance through this system is presented

in Fig. 3.25 with and without a magnetic field. The most noticeable change seen in the

conductance is the shift in the peaks of the QBS. This is because the time-average height

of the potential is lower than in the static case. Figure 3.26 shows an enlarged view of the

conductance in a magnetic field of B = 1.0 T. A number of smaller features can be seen

there more clearly that are not seen in the static case. These resonances are due to inelastic

scatterings induced by the potential. Some of these resonances are familiar, such as the

ones located at E/h̄Ωω = 0.67 and E/h̄Ωω = 0.85 in Fig. 3.26a. These resonances are

located ω and 2ω away from the subband edge respectively, and are due to the opening

of a new conduction channel. Fano like resonances can also be seen in the conductance at

E/h̄Ωω = 0.8985, E/h̄Ωω = 0.950, E/h̄Ωω = 1.006 and E/h̄Ωω = 1.064. In Fig. 3.27 the

probability density at the point marked a in Fig. 3.26a is shown over one period at equally

spaced intervals. The probability density is interesting as it show a QBS that rotates inside

the cavity. The results presented here for this system are preliminary and further study

will be continued in future.
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FIG. 3.25: The conductance of the time-harmonic double QPC.
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FIG. 3.26: Enlarged view of the conductance of the time-harmonic double QPC in a magnetic
field of B = 1.0 T.
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-30 -20 -10 0 10 20 30
xβ

-4
-3
-2
-1
0
1
2
3
4

yβ

(b) tΩω = 2.96 (t = 0.97 ps).
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(c) tΩω = 6.28 (t = 2.07 ps).
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(d) tΩω = 9.24 (t = 3.05 ps).

FIG. 3.27: Probability density for the double time-harmonic QPC at E/h̄Ωω = 0.950, marked as
point a in Fig. 3.26a.
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FIG. 3.27: Probability density for the double time-harmonic QPC at E/h̄Ωω = 0.950, marked as
point a in Fig. 3.26a.
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FIG. 3.27: Probability density for the double time-harmonic QPC at E/h̄Ωω = 0.950, marked as
point a in Fig. 3.26a.
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3. Numerical Results

3.3.3 Double QPC with a Repulsive Gaussian in the Cavity

A static double QPC with a Gaussian hill in the middle of the cavity

V(x, y) = V1e−αx(x−x1)2−αy(y−y1)2
+ V2e−γx(x−x2)2−γy(y−y2)2

+ V3e−ηx(x−x3)2−ηy(y−y3)2
+ V4e−νx(x−x4)2−νy(y−y4)2

+ V5e−τx x2−τyy2
, (3.5)

with the parameters,

V1 = 6.5 meV, αx = 0.5β2
0, αy = 0.3β2

0, x1 = 8β0, y1 = −3β0,

V2 = 6.5 meV, γx = 0.5β2
0, γy = 0.3β2

0, x2 = 8β0, y2 = 3β0,

V3 = 6.5 meV, ηx = 0.5β2
0, ηy = 0.3β2

0, x3 = −8β0, y3 = −3β0,

V4 = 6.5 meV, νx = 0.5β2
0, νy = 0.3β2

0, x4 = −8β0, y4 = 3β0,

V5 = 6.5 meV, τx = 0.5β2
0, τy = 0.5β2

0 ,

can be seen in Fig. 3.28 and the conductance is presented in Fig. 3.29. The conductance is
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(b) 3D plot.

FIG. 3.28: A plot of the double QPC with a repulsive Gaussian in the middle embedded in a wire
with a parabolic confinement.

quite low when the strength of the magnetic field is low. Since then the incident wave

collides almost directly with the center hill. When the strength of the magnetic field

increases the Lorentz force starts to aid the conductance by making edge states similar to

those seen in Fig. 3.14 that guide the electrons around the hill. The ring structure that

forms can be seen in Fig. 3.31. The structure is not as simple as in the case of the Gaussian

Ring [3] due to the size of the double QPC. In Fig. 3.30 the QBS marked in Fig. 3.29 can be

seen. It seems to be more favourable for the QBS to form two small rings (Figs. 3.30a-3.30d)

between the QPCs and the hill instead of a big ring around the Gaussian hill (Fig. 3.30e).
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3.3. Double Quantum Point Contact

The probability density show interference between the hill and the QPCs along with mode

mixing around the hill. In Fig. 3.30c the wave length is λβ ≈ 1.4 and the distance between

the minima in the interference between the QPC and the hill is on average Lβ ≈ 1.37. This

gives a ratio of λβ/Lβ ≈ 0.98. The ellipse on the right has a major diameter of aβ ≈ 9.14

and a minor diameter of bβ ≈ 4.94. In Fig. 3.30e the distance between the two peaks is

Lβ ≈= 4.8.
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FIG. 3.29: The conductance of the double QPC with a Gaussian hill in the middle in a magnetic
field.
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3. Numerical Results
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(a) Point a (E/h̄Ωω = 2.18212, n = 1, B = 0.0 T).
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(b) Point b (E/h̄Ωω = 1.99053, n = 0, B = 1.0 T).
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(c) Point e (E/h̄Ωω = 1.81084, n = 0, B = 1.5 T).
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(d) Point e (E/h̄Ωω = 1.81084, n = 1, B = 1.5 T).
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(e) Point f (E/h̄Ωω = 1.69184, n = 0, B = 1.5 T).

FIG. 3.30: Quasi-bound states in the double QPC with a repulsive Gaussian in the Middle. The
energies at which the probability density is calculated are indicated in each sub-figure
and marked in Fig. 3.29.
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3.3. Double Quantum Point Contact
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(a) Point e (E/h̄Ωω = 2.13455, n = 0, B = 1.0 T).
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(b) Point e (E/h̄Ωω = 2.13455, n = 1, B = 1.0 T).
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(c) Point c (E/h̄Ωω = 2.14404, n = 0, B = 1.0 T).
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(d) Point c (E/h̄Ωω = 2.14404, n = 1, B = 1.0 T).
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(e) Point g (E/h̄Ωω = 2.37847, n = 1, B = 2.0 T).

FIG. 3.31: Probability density for the double QPC with a repulsive Gaussian hill. Points at which
energies the probability density is calculated are marked in Fig. 3.29.
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CHAPTER 4
Conclusion and Summary

In this thesis a time-dependent model for electron transport through a quantum wire

was developed using the Lippmann-Schwinger scattering formalism and the Landauer-

Büttiker formalism. The model describes sums of static and time-periodic Gaussian-shaped

potentials are used to make complex geometries embedded in quantum wires. This model

was then used to investigate the transport through five different types of structures, a time-

harmonic Gaussian-shaped potential, a Gaussian-shaped well with a bottom oscillating

periodically in time, a static single QPC, a double QPC and a static Gaussian-shaped hill

placed inside a static double QPC. The model is capable of examining these structures

both with and without a homogeneous perpendicular magnetic field with the use of a

mixed momentum-coordinate representation [8].

The first structure investigated was a time-harmonic Gaussian-shaped potential. The

conductance of this structure was very similar to the static case except dip-and-peak

structures were observed when the incident electrons could make inelastic transitions

to a subbands edge. In the case of a time-harmonic Gaussian-shaped well a Fano like

resonance was observed. Which was due to the trapping of electrons in the well by an

inelastic scattering processes.

The quantum point contact investigated showed that the conductance through it is quantised

similar to the quantisation of the conductance through an ideal quantum wire. When a

magnetic field was applied perpendicular to the QPC edge states were observed as the

strength of the magnetic field increased, these states made the conductance of the QPC

approach that of an idle wire. The double QPC showed more structure in the conductance

than the single QPC due to quasi-bound states inside the cavity formed by the two QPCs

and also exhibited the quantisation of the conductance like the single QPC. The addition
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4. Conclusion and Summary

of the second QPC did not lower the conductance significantly. When a magnetic field

was applied to the double QPC the electrons could execute a cyclotron motion inside the

cavity and Aharonov-Bohm oscillations were observed even though the geometry of the

system was singly connected. In the time-harmonic double QPC the QBS were shifted

due to a weakening of one of the QPC on the average and resonances due to inelastic

scatterings were observed. When a static Gaussian-shaped hill was placed inside the

cavity of the double QPC the conductance was almost blocked at low magnetic fields

where the electron wave collided almost directly with the center hill. When the strength

of the magnetic field was increased AB type oscillations occur in the conductance. The

probability density showed a rich structure with interference and mode mixing.

In general we have succeeded in constructing a model of the conduction of an electron wave

through a smooth extended static and time-periodic embedded system in a quantum wire

in an external magnetic field. The model will be used for studying quantum pumping and

other interference phenomena in a realistic potential landscape mimicking experimental

systems.
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A
Ideal Quantum Wire

A.1 States of a Quantum Wire in a Magnetic Field

It is important to know the states of a quantum wire that does not have an embedded

scattering potential. These asymptotic states in the scattering sense can be used as a basis

to describe the transport of a wire with an embedded scattering potential. Here these

states will be found and some of their properties discussed.

The Hamiltonian for a ideal wire in a magnetic field is H = H0 + Vc(~x), where

H0 =
1

2m∗
[

P +
e
c
~A(~x)

]2
. (A.1)

We choose ~B to be in the z-direction (~B = Bz) and use Landau gauge ~A = −By~x. The

Hamiltonian of the system is then

H0 =
1

2m∗

[
h̄
i
∇− eBy~x

]2
= − h̄2

2m∗

[
∇2 − 2i

l2 y∂x −
y2

l4

]
. (A.2)

The constant l is called the magnetic length and is given by

l2 =
h̄

eB
. (A.3)

We choose the confinement potential to be parabolic,

Vc(y) =
1
2

m∗Ω2
0y2 , (A.4)

giving use the total Hamiltonian

H = H0 + Vc(y) = − h̄2

2m∗

[
∇2 − 2i

l2 y∂x −
y2

l4

]
+

1
2

m∗Ω2
0y2 . (A.5)
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A. Ideal Quantum Wire

As there is no time dependence it is enough to solve the time-independent Schrödinger

equation

HΨ(x, y) = EΨ(x, y) . (A.6)

To be able to separate the Schrödinger equation we must go to a mixed momentum-

coordinate representation [8] by doing a Fourier transformation on the x-coordinate

Ψ(x, y) =
∫ dp

2π
eipxΨ(p, y) , (A.7)

This Fourier transformation of the x-coordinate yields∫ dp
2π

{
− h̄2

2m∗

[
p2∂2

y +
2p
l2 y− y2

l4

]
+

1
2

m∗Ω2
0y2

}
Ψ(p, y) = E

∫ dp
2π

eipxΨ(p, y) . (A.8)

We can simplify the above equation by completing in the square

h̄2y2

2m∗l4 +
1
2

m∗Ω2
0y2− h̄2 p

m∗l2 y +
h̄2 p2

ml2 y +
h̄2 p2

2m∗
=

1
2

m∗Ω2
ω(y− y0)2 +

h̄2

2m∗
p2
(

1− ω2
c

Ω2
ω

)
,

(A.9)

where ωc = eB
m∗ , Ω2

ω = ω2
c + Ω2

0 and y0 = h̄pωc
m∗Ω2

ω
.

Then by transforming the whole equation with
∫

dx eiqx we obtain{
− h̄2

2m∗
∂2

y +
1
2

m∗Ω2
ω(y− y0)2

}
Ψ(q, y) =

(
E− h̄2

2m∗
q2 Ω2

0
Ω2

ω

)
Ψ(q, y) . (A.10)

This is just the harmonic oscillator with frequency Ωω and center coordinate y0. The

solution is trivial and can be found in any elementary text book on quantum mechanics [22],

ψn(q, y) =
(

β2

π

) 1
4 1√

2nn!
e−β2 (y−y0)2

2 Hn(β(y− y0)) . (A.11)

Where Hn(y) is the Hermite polynomial of order n [23] and the constant β has the

dimension of inverse length and is given by

β2 =
m∗Ωω

h̄
. (A.12)

This constant is the reciprocal of the effective magnetic length in the system and it includes

the magnetic length l in Eq. A.3. This can be seen by rewriting β as

β2 =
m∗

h̄

√
ω2

c + Ω2
0 =

√
e2B2

h̄2 +
(m∗)2

h̄2 Ω2
0 =

√
1
l4 +

(m∗)2

h̄2 Ω2
0 . (A.13)

The energy of the system is

En(q) = En +
h̄2

2m
q2 Ω2

0
Ω2

ω
, (A.14)

where En = (n + 1/2)h̄Ωω.
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A.2. Bound States in a Finite Wire

A.2 Bound States in a Finite Wire

We now want to examine a finite wire with a parabolic confinement that does not have

an embedded scattering potential. The bound states of this wire can be compared with

the quasi-bound states of structures embedded in a wire. The Schrödinger equation for a

finite wire with a parabolic confinement is{
− h̄2

2m∗
∇2 +

1
2

m∗Ω2
0y2 + W(x)

}
ψ(x, y) = Eψ(x, y) . (A.15)

Where W(x) is the infinite square well potential in the x-direction

W(x) =

 0, −L/2 ≤ x ≤ L/2,

∞, x < −L/2, x > L/2,
(A.16)

and L is the length of the wire. Equation (A.15) is not coupled in the coordinates and

we can use separation of variables to solve the equation, ψ(x, y) = ϕ(x)φ(y). It is easy

to see that φ(y) is just the eigenfunction for the harmonic oscillator and that ϕ(x) is the

eigenfunction for the infinite square well. The allowed energies of the system are then

given by the sum of the energies of the two

Enj = h̄Ωω(n +
1
2
) +

j2π2h̄2

2m∗L2 , (A.17)

scaling the variables yields

Enj

h̄Ωω
=
(

1
2

+ n
)

+
j2π2

2(Lβ)2 ,

or

Ênj =
(

1
2

+ n
)

+
j2π2

2L̂2
. (A.18)
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B
Matrix Elements for the Potential

In this appendix the analytical calculations for the matrix elements of the potential will be

shown. The shape of the potential has been chosen to be Gaussian and is given by

V(x, y) = Ve−αx(x−xc)2−αy(y−yc)2
, (B.1)

where V is the strength, (xc, yc) are the center coordinates and (αx, αy) control the range

of the potential. The matrix elements of the potential are given by

Vnn′(q, p) =
∫

dy φ∗n(y, q)V(q− p, y)φn′(y, p) , (B.2)

where

V(q− p, y) =
∫

dx e−i(q−p)xVe−αx(x−xc)2−αy(y−yc)2

= Ve−αy(y−yc)2
∫ ∞

−∞
dx e−αx(x−xc)2−i(q−p)x . (B.3)

We start by calculating V(q− p, y) by completing the square in the exponential

αx(x− xc)2 + i(q− p)x = a(x + b)2− x f ac = αx

(
x +

i(q− p)− 2αxxc

2αx

)2

− x f ac , (B.4)

where

x f ac = −αxx2
c +

(i(q− p)− 2αxxc)2

4αx
.

Using the above we obtain

V(q− p, y) = Ve−αy(y−yc)2
ex f ac

∫ ∞

−∞
dx e−αx(x+ i(q−p)−2αx xc

2αx )2
, (B.5)

i.e. a trivial Gaussian integral with the solution

V(q− p, y) = V
√

π

αx
e−αy(y−yc)2

ex f ac . (B.6)
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B. Matrix Elements for the Potential

We now insert V(q− p, y) into Eq. (B.2) and use Eq. (A.11) to get

Vnn′(q, p) =
1√
π

1√
2n+n′n!n′!

V
√

π

αx
ex f ac

×
∫

βdy e−β2 1
2 ((y−y0(q))2+(y−y0(p))2)−αy(y−yc)2

Hn(β(y− y0(q)))Hn′(β(y− y0(p))) .

(B.7)

Rearranging terms and scaling we arrive at

V̂nn′(q, p) = V̂
β√
αx

1√
2n+n′n!n′!

ex f ac×

×
∫

βdy e−β2 1
2 ((y−y0(q))2+(y−y0(p))2)−αy(y−yc)2

Hn(β(y− y0(q)))Hn′(β(y− y0(p))) ,

(B.8)

where V̂nn′(q, p) = 2 (h̄Ωω)2

(h̄Ω0)2
β

h̄Ωω
Vnn′ and V̂ = 2 (h̄Ωω)2

(h̄Ω0)2
V

h̄Ωω
.

We shall now take a closer look at the y integral and start by writing

−1
2
(S− Sq)2− 1

2
(S− Sp)−

αy

β2 (S− Sc)2 = −a(S− b)2 + c = −aS2 + 2abS− ab2 + c (B.9)

where S = βy, Sq = βy0(q), Sp = βy0(p) = q
β

ωc
Ωω

, Sc = βyc,

a = (1 + αy
β2 ), b =

Sq+Sp+2
αy
β2 Sc

2a and c =
(Sq+Sp+2

αy
β2 Sc)2

4a − 1
2 (S2

q + S2
p − 2 αy

β2 S2
c ).

This gives us

I = e

(Sq+Sp+2
αy
β2 Sc)2

4a − 1
2 (S2

q+S2
p−2

αy
β2 S2

c )
∫

βdy e−(u− Sq+Sp
2
√

a )2
Hn(

u√
a
− Sq)Hn′(

u√
a
− Sp) , (B.10)

where u =
√

aS. By use of (GR. 8.958.2) [24] we can write the Hermite Polynomials as a

function of a single argument, i.e.

I =
1√
a

e
z2− 1

2 (S2
q+S2

p−2
αy
β2 S2

c ) 1√
2n+n′

n

∑
k=0

n′

∑
k′=0

(
n
k

)(
n′

k′

)
Hk(−

√
2Sq)Hk′(−

√
2Sp)×

×
∫

du e−(u−z)2
Hn−k(

√
2
a

u)Hn′−k′(
√

2
a

u) , (B.11)

where z =
Sq+Sp+2

αy
β2 Sc

2
√

a .

The integral over the exponential and the Hermite polynomials can now be done using

(GR. 7.374.9) [24]

I =
√

π

a
e

z2− 1
2 (S2

q+S2
p−2

αy
β2 S2

c )
n

∑
k=0

n′

∑
k′=0

min(n−k,n′−k′)

∑
l=0

×

×
(

n
k

)(
n′

k′

)(
n− k

l

)(
n′ − k′

l

)
2l l!×

× Hk(−
√

2Sq)Hk′(−
√

2Sp)(1− 2
a
)

n−k+n′−k′
2 −l Hn−k+n′−k′−2l

[ √
2/az√

1− 2/a

]
. (B.12)
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The analytical expression for the matrix element is then

V̂nn′(q, p) = V̂

√
β2π

aαx

1

2n+n′
√

n!n′!
ez2− 1

2 (S2
q+S2

p−2αy/β2S2
c )e
−αx/β2β2x2

c +
(i(q/β2−p/β2)−2αx/β2β2xc)2

4αx/β2 ×

×
n

∑
k=0

n′

∑
k′=0

min(n−k,n′−k′)

∑
l=0

(
n
k

)(
n′

k′

)(
n− k

l

)(
n′ − k′

l

)
2l l!×

× Hk(−
√

2Sq)Hk′(−
√

2Sp)(1− 2
a
)

n−k+n′−k′
2 −l Hn−k+n′−k′−2l

[
z
√

2/a√
1− 2/a

]
.

(B.13)
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C
Floquet Theory

Floquet theory is a branch of theory of ordinary differential equations and states that a

system with a time periodic potential will have a complete set of states [25, 26]

|Φn(x, y, t)〉 = e−(iεn/h̄)t|un(x, y, t)〉 , (C.1)

where |un(t + T)〉 = |un(t)〉 and T is the period of the system. The state |un(t)〉 is called

the Floquet state and the quantities εn is referred to as the quasi-energy.

It is interesting to compare this equation to the ones derived in chapter 2. If we expand the

time-part of the periodic Floquet state in a Fourier series with frequency ω and construct

the full wave function by summing over all states, we have

|Ψ(x, y, t)〉 = ∑
m n

e−i(εn/h̄+mω)t|ϕm
n (x, y)〉 . (C.2)

Comparing this equation with Eq. (2.34) we see that

|ϕm
n 〉 =

∫ dq
2π

φn′(q, y)eiqxGm′
n′ (q)Tm′0

n′n (q, k0
n) (C.3)

and that the quasi-energy (εn) is equal to the incident energy (E0) of the electrons.

C.1 Green’s Function

In operator form the time-dependant Schrödinger equation is

ih̄∂t|Ψ(t)〉 = H(t)|Ψ(t)〉 (C.4)

where H(t) = H0 + V(t). Using Eq. (C.2) and expanding the time part of the potential in

a Fourier series we have

∑
m

e−i(E0/h̄+mω)t(E0 + h̄mω− H0)|ϕm〉 = ∑
sm

e−i(E0/h̄+(m+s)ω)tVs|ϕm〉 (C.5)
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C. Floquet Theory

To get rid of the time-dependence we multiply the above equation with ei(E0/h̄)t(e−im′ωt)∗

and integrate over t from 0 to T. We can then write Eq. (C.4) as

(E0 + h̄mω− H0)|ϕm〉 = ∑
m′

Vm−m′ |ϕm′〉 (C.6)

We now define the Green’s function as

Gm(E0) =
1

E0 + h̄mω− H0
, (C.7)

The solution to Eq. (C.6) is then

|ϕm〉 = |ϕ0〉+ Gm(E0) ∑
m′

Vm−m′ |ϕm′〉 . (C.8)

We can see that this is a solution by applying (Gm
n )−1(E0 + h̄mω) to the solution as we then

obtain Eq. (C.6) again. Equation (C.8) is same as Eq. (2.29), i.e. the Lippmann-Schwinger

equation for the Fourier components of the wave function.

C.2 T-matrix

Suppressing the summation in Eq. (C.8), we have

ϕ = ϕ0 + GVϕ , (C.9)

we assume an operator T, of the resolvent type such that

ϕ = (1 + GT)ϕ0 , (C.10)

where we have defined the operator T as

T = V + VGT . (C.11)

We now write this equation in mixed momentum-coordinate representation by using

〈qn′m′|T|pnm〉 = 〈qn′m′|V|pnm〉+ 〈qn′m′|VGT|pnm〉 , (C.12)

where

〈x|p〉 = eipx , 〈y|nm〉 = φ(y, km
n ) , (C.13)

and use of the unity operator twice

1 = ∑
n m

∫ dk
2π
|knm〉〈knm|

yields

〈qn′m′|T|pnm〉 = 〈qn′m′|V|pnm〉+ ∑
rs r′s′

∫ dk
2π

dk′

2π
〈qn′m′|V|krs〉〈krs|G|k′r′s′〉〈k′r′s′|T|pnm〉 .
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(C.14)

The Green’s function includes H0 which is composed of the kinetic part and the confinement

potential (in a magnetic field), therefore we have

H0|knm〉 =

(
(n +

1
2
)h̄Ωω +

h̄2

2m
Ω2

0
Ω2

ω
k2

)
|knm〉 (C.15)

which gives for the Green’s function

〈k′n′m′|Gm(E0)|knm〉 = 〈k′n′m′|knm〉 1

E0 + h̄mω− (n + 1
2 )h̄Ωω − 1

2

(
k
β

)2 (h̄Ω0)2

h̄Ωω

. (C.16)

〈k′n′m′|Gm(E0)|knm〉 = 2πδ(k′ − k)δn′nδm′m2
h̄Ωω

(h̄Ω0)2
1

(km
n /β)2 − (k/β)2

= 2
(h̄Ωω)2

(h̄Ω0)2)
2π

h̄Ωω
δ(k′ − k)δn′nδm′mGm

n (k) (C.17)

Plugging the above into Eq. (C.14) we arrive at

Tm′m
n′n (q, p) = Vm′−m

n′n (q, p) + ∑
rs

∫ dk
2π

Vm′−s
n′r (q, k)Gs

r(k)Tsm
rn (k, p) , (C.18)

i.e. the equation for the T-matrix as in Eq. (2.32).
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D
Numerical Work

In this appendix it will be shown how the T-matrix equation (Eq. 2.32) is prepared for

numerical calculations. The equation is turned into a set of linear algebraic equations that

are easily solved with the help of a computer. This transformation is done by using a four

point Gaussian integration on the integral that appears in the equation. But before this

transformation can be done the poles of the Green’s function must be taken care of. Most

of the work done in this appendix is based on earlier work done by Jens H. Bárðarson [27].

D.1 Poles in the Green’s Function

The Green’s functions has an undetermined number of poles and appears in the integral

equation for the T-matrix (Eq. 2.41). These poles must be taken into account during the

integration to obtain the correct results. This section shows how they are dealt with.

The Green’s function is

Gm
n (k) =

1
(km

n )2 − k2 + iη
, η → 0+ (D.1)

where km
n and k are dimensionless, namely k→ k/β. We now use the fact that [28]
1

x + iη
=
P
x
− iπδ(x) , (D.2)

where P donates the Cauchy principle-value [29]. Using this we obtain∫ ∞

−∞

f (k) dk
(km

n )2 − k2 + iη
= P

∫ ∞

−∞

f (k) dk
(km

n )2 − k2 −
∫ ∞

−∞
iπ f (k)δ((km

n )2 − k2) dk , (D.3)

where f (k) is some function that is multiplied with the Green function in the integral.

Observing that we can write

δ((km
n )2 − k2) =

1
2|km

n |
(δ(k + km

n ) + δ(k− km
n )) , (D.4)
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which yields∫ ∞

−∞

f (k) dk
(km

n )2 − k2 = P
∫ ∞

−∞

f (k) dk
(km

n )2 − k2 −
iπ

2|km
n |

( f (km
n ) + f (−km

n )) . (D.5)

We know that∫ ∞

−∞

dk
(km

n )2 − k2 = 0 ⇒
∫ ∞

−∞

f (±km
n ) dk

(km
n )2 − k2 = 0 , (D.6)

and we can add this zero to the principle integral without effecting it

P
∫ ∞

−∞

f (k) dk
(km

n )2 − k2 =
∫ ∞

0

f (k)− f (km
n )

(km
n )2 − k2 dk +

∫ ∞

0

f (−k)− f (−km
n )

(km
n )2 − k2 dk . (D.7)

We then have the final equation∫ ∞

−∞

f (k) dk
(km

n )2 − k2 =
∫ ∞

0

f (k)− f (km
n )

(km
n )2 − k2 dk +

∫ ∞

0

f (−k)− f (−km
n )

(km
n )2 − k2 dk

− iπ
2|km

n |
( f (km

n ) + f (−km
n )) . (D.8)

It should be noted that this is not needed for the non-propagating modes since the Green’s

function is not singular for those modes, as the wavevector is imaginary in those cases.

D.2 Algebraic Equations

We will now use Eq. (D.8) to turn Eq. (2.32) into a set of algebraic equations. Recall from

Eq. (2.41)

T̂m′ m
n′n (q, p) = V̂s, n′n(q, p)δm′−m,0 +

1
2

V̂t, n′n(q, p)(δm′−m,−1 + δm′−m,1)

+ ∑
r

∫ dk
2π

V̂s, n′r(q, k)Gm′
r (k)T̂m′

rn (k, p)

+ ∑
r

∫ dk
2π

1
2

V̂t, n′r(q, k)Gm′+1
r (k)T̂m′+1

rn (k, p)

+ ∑
r

∫ dk
2π

1
2

V̂t, n′r(q, k)Gm′−1
r (k)T̂m′−1

rn (k, p)

= T̂b + T̂s + T̂t , (D.9)

where

T̂b = V̂s, n′n(q, p)δm′−m,0 +
1
2

V̂t, n′n(q, p)(δm′−m,−1 + δm′−m,1) , (D.10)

T̂s = ∑
r

∫ dk
2π

V̂s, n′r(q, k)Gm′
r (k)T̂m′m

rn (k, p) , (D.11)

and

T̂t = ∑
r

∫ dk
2π

1
2

V̂t, n′r(q, k)Gm′+1
r (k)T̂(m′+1)m

rn (k, p)

+ ∑
r

∫ dk
2π

1
2

V̂t, n′r(q, k)Gm′−1
r (k)T̂(m′−1)m

rn (k, p) . (D.12)
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Using Eq. (D.8) for the poles in the Green’s function yields

T̂s = ∑
r=Propagating

∫ ∞

0

V̂s, n′r(q, k)T̂m′m
rn (k, p)− V̂s, n′r(q, km′

r )T̂m′m
rn (km′

r , p)
(km′

r )2 − k2
dk
2π

+ ∑
r=Propagating

∫ ∞

0

V̂s, n′r(q,−k)T̂m′m
rn (−k, p)− V̂s,n′r(q,−km′

r )T̂m′m
rn (−km′

r , p)
(km′

r )2 − k2
dk
2π

− ∑
r=Propagating

i
4|km′

r |
(V̂s, n′r(q, km′

r )T̂m′m
rn (km′

r , p) + V̂s, n′r(q,−km′
r )T̂m′m

rn (−km′
r , p))

− ∑
r=non−Propagating

∫ ∞

−∞

dk
2π

V̂s, n′r(q, k)T̂m′m
rn (k, p)

(κm′
r )2 + k2 . (D.13)

Notice that we have split the sum over the subbands into two sums, one over propagating

modes and another over non-propagating modes. This is done because the Green’s function

is not singular for the non-propagating modes. The wavevector is an imaginary number

in those cases and we have emphasised this by writing κm′
r = ikm′

r . The next step is to turn

the integrals into sums by evaluating the integral at points k j with corresponding weight

wj. The index j runs from 1 to Ng, where Ng is the number of points in the integration.

T̂s = ∑
r=Propagating

Ng

∑
j=1

V̂s, n′r(q, k j)T̂m′m
rn (k j, p)− V̂s, n′r(q, km′

r )T̂m′m
rn (km′

r , p)
(km′

r )2 − k2

ω′j
2π

+ ∑
r=Propagating

Ng

∑
j=1

V̂s, n′r(q,−k j)T̂m′m
rn (−k j, p)− V̂s,n′r(q,−km′

r )T̂m′m
rn (−km′

r , p)
(km′

r )2 − k2
j

ω′j
2π

− ∑
r=Propagating

i
4|km′

r |
(V̂s, n′r(q, km′

r )T̂m′m
rn (km′

r , p) + V̂s, n′r(q,−km′
r )T̂m′m

rn (−km′
r , p))

− ∑
r=non−Propagating

Ng

∑
j=1

ω′j
2π

V̂s, n′r(q, k j)T̂m′m
rn (k j, p)

(κm′
r )2 + k2

j

− ∑
r=non−Propagating

Ng

∑
j=1

ω′j
2π

V̂s, n′r(q,−k j)T̂m′m
rn (−k j, p)

(κm′
r )2 + k2

j
. (D.14)

We now make a Gauss-net for a four point Gaussian integration [27, 30],

qj =

 −kNg−j+1 j = 1, . . . , Ng

k j−Ng j = Ng + 1, . . . , 2Ng ,
(D.15)

and for the weights

ωj =


ω′Ng−j+1

2π j = 1, . . . , Ng
ω′j−Ng

2π j = Ng + 1, . . . , 2Ng ,
(D.16)

63



D. Numerical Work

resulting in

T̂s = ∑
r=Propagating

2Ng

∑
j=Ng+1

ωj
V̂s, n′r(q, k j)T̂m′m

rn (k j, p)− V̂s, n′r(q, km′
r )T̂m′m

rn (km′
r , p)

(km′
r )2 − k2

j

+ ∑
r=Propagating

Ng

∑
j=1

ωj
V̂s, n′r(q, k j)T̂m′m

rn (k j, p)− V̂s, n′r(q,−km′
r )T̂m′m

rn (−km′
r , p)

(km′
r )2 − k2

j

− ∑
r=Propagating

i
4|km′

r |
(V̂s, n′r(q, km′

r )T̂m′m
rn (km′

r , p) + V̂s, n′r(q,−km′
r )T̂m′m

rn (−km′
r , p))

− ∑
r=non−Propagating

2Ng

∑
j=1

ωj
V̂s, n′r(q, k j)T̂m′m

rn (k j, p)
(κm′

r )2 + k2
j

. (D.17)

If we now collect together terms and use that (κm′
r )2 + k2

j = −((km′
r )2 − k2

j ), we obtain

T̂s = ∑
r=All

2Ng

∑
j=1

ωj
V̂s,n′r(q, k j)T̂m′m

rn (k j, p)
(km′

r )2 − k2
j

− ∑
r=Propagating

V̂s,n′r(q, km′
r )T̂m′m

rn (km′
r , p)

1
2

(2Ng

∑
j=1

ωj
1

(km′
r )2 − k2

j
+

i
2|km′

r |

)

− ∑
r=Propagating

V̂s,n′r(q,−km′
r )T̂m′m

rn (−km′
r , p)

1
2

(2Ng

∑
j=1

ωj
1

(km′
r )2 − k2

j
+

i
2|km′

r |

)
.

(D.18)

The steps for Tt are the same and give

T̂t = ∑
r=All

2Ng

∑
j=1

ωj

2
V̂t, n′r(q, k j)T̂(m′+1)m

rn (k j, p)

(km′+1
r )2 − k2

j

− ∑
r=Propagating

V̂t, n′r(q, km′+1
r )T̂(m′+1)m

rn (km′+1
r , p)

1
4

2Ng

∑
j=1

ωj
1

(km′+1
r )2 − k2

j

+
i

2|km′+1
r |


− ∑

r=Propagating
V̂t, n′r(q,−km′+1

r )T̂(m′+1)m
rn (−km′+1

r , p)
1
4

2Ng

∑
j=1

ωj
1

(km′+1
r )2 − k2

j

+
i

2|km′+1
r |


+ ∑

r=All

2Ng

∑
j=1

ωj

2
V̂t, n′r(q, k j)T̂(m′−1)m

rn (k j, p)

(km′−1
r )2 − k2

j

− ∑
r=Propagating

V̂t, n′r(q, km′−1
r )T̂(m′−1)m

rn (km′−1
r , p)

1
4

2Ng

∑
j=1

ωj
1

(km′−1
r )2 − k2

j

+
i

2|km′−1
r |


− ∑

r=Propagating
V̂t,n′r(q,−km′−1

r )T̂(m′−1)m
rn (−km′−1

r , p)
1
4

2Ng

∑
j=1

ωj
1

(km′−1
r )2 − k2

j

+
i

2|km′−1
r |

 ,

(D.19)

the equation is in principle the same as Ts with m → m ± 1. We would now like to

simplify the sums by reducing the number of indexes, as this makes it easier to deal the
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µ n k
1 1 k1
...

...
...

2Ng 1 k2Ng

2Ng + 1 2 k1
...

...
...

2NmodesNg Nmodes k2Ng

2NmodesNg + 1 1 −km
1

2NmodesNg + 2 2 −km
2

...
...

...
2NmodesNg + Nm

p Nm
p −km

Nm
p

2NmodesNg + Nm
p + 1 1 km

1
...

...
...

2NmodesNg + 2Nm
p Nm

p km
Nm

p

Table II: The µ mapping used in the numerical calculations.

Based on: J. H. Bardarson, Master’s thesis, University of Iceland, 2004 [27].

equation numerically. In Table. II we see a mapping of the summation indexes (n, k) to a

single index (µ). Writing the equations using this new index yields

T̂m′m
n′n (q, p) = V̂m′

s, n′n(q, p)δm′−m,0 +
1
2

Vt, n′n(q, p)(δm′−m,−1 + δm′−m,1)

+

2Nmodes Ng

∑
µ=1

+
2Nmodes Ng+2 ∑ Nm′

p

∑
2Nmodes Ng+2 ∑ Nm′−1

p +1

Dm′
µ V̂s, n′µ(q)Tm′m

µn (p)

+

2Nmodes Ng

∑
µ=1

+
2Nmodes Ng+2 ∑ Nm′+1

p

∑
2Nmodes Ng+2 ∑ Nm′

p +1

 1
2

Dm′
µ V̂t, n′µ(q)T(m′+1)m

µn (p)

+

2Nmodes Ng

∑
µ=1

+
2Nmodes Ng+2 ∑ Nm′−1

p

∑
2Nmodes Ng+2 ∑ Nm′−2

p +1

 1
2

Dm′
µ V̂t, n′µ(q)T(m′−1)m

µn (p) , (D.20)

where the function Dm′
µ has been defined in the following way

Dm′
µ =



ωj
1

(km′
r )2−k2

j
µ = 1, . . . , 2NmodesNg ,

r = All modes,

− 1
2

(
∑

2Ng
j=1

(
ωj

1
(km′

r )2−k2
j

)
+ i

2|km′
r |

)
µ = 2NmodesNg + 1, . . . , 2NmodesNg + 2 ∑ NMmax

p ,

r = Propagating modes.

(D.21)
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D.3 Structure of the Matrix

Equation (D.20) gives us hints of how it should be structured into a matrix for numerical

calculations. If the sideband index where removed the equation would be the same as in

the static case, i.e. the matrix should reduce to the static case for a static potential. This

would suggest that each sideband m should give a sub-matrix containing the Gauss-net

and the subband sum for that m. The coupling of the sidebands also gives another clue, as

each sideband is only coupled to its adjacent bands the matrix should have a tri-diagonal

form. The end result is a matrix that has a block tri-diagonal structure. An example

for Mmax = 5 is given in Fig. D.1. It shows how the sub-matrices are structured into

the overall matrix and how the coupling between the sidebands is cut. The size of

. . . . . . . . . . .

... T−2
Vs

... T−1
Vt

...
. . . . . . . . . . . . . . . . .
... T−2

Vt

... T−1
Vs

... T0
Vt

...
. . . . . . . . . . . . . . . . . . . . . . .

... T−1
Vt

... T0
Vs

... T1
Vt

...
. . . . . . . . . . . . . . . . . . . . . . .

... T0
Vt

... T1
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... T2
Vt
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. . . . . . . . . . . . . . . . .

... T1
Vt

... T2
Vs

...
. . . . . . . . . . .





. . . . .

... T−2 ...

. . . . .

... T−1 ...

. . . . .

... T0 ...

. . . . .

... T1 ...

. . . . .

... T2 ...

. . . . .




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
FIG. D.1: Structure of the matrix used in the numerical calculations.

a sub-matrix is {2NmodesNg + 2Np} × {2NmodesNg + 2Np}, i.e. two times the Gauss-net

(2Ng) multiplied with the number of subband in the calculations, plus two times the

number propagating modes (2Np). The reason why the Gauss-net and the propagating

modes are multiplied with two is to also take into account negative numbers. The whole

matrix has the size {Mmax(2NmodesNg + 2Np)} × {Mmax(2NmodesNg + 2Np)}. In order to

obtain a square matrix there must be an equal number of positive and negative sidebands.

Therefore, Mmax is always of the form Mmax = 1 + 2s where s ∈ N0. There is also a

physical reason to have an equal number of sideband on each side. If a potential is capable

of giving an electron the energy mh̄ω it should also be capable of taking it away.
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