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Abstract

To model transport through molecules one needs a description of the molecule and
a transport formalism. We have implemented a grid-free DF'T method to obtain
the ground state of a molecule and devised a transport formalism based on the
Lippmann-Schwinger equation, the integral equation of scattering. The conductance
of a quasi-one-dimensional quantum wire is calculated by connecting the transport

formalism with the Landauer equation.

Agrip

Ef reikna skal straum i gegnum sameind er naudsynlegt ad hafa goda lysingu &
sameindinni sem og lysingu & flutningi rafeinda. Vio h6fum notad netfrjalsar péttni-
fellafreedi (DFT) adferdir til bess ad finna grunnastand sameinda. Einnig héfum vid
sett saman lysingu & flutningi sem byggir & heildisjofnu tur dreififraedi, svokalladri
Lippmann-Schwinger jofnu. Flutningsfreedunum og tengingu beirra vio Landauer

jofnuna er beitt til pess ad reikna leioni i skammtavir.
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Chapter 1
Introduction

Beginning with the invention of the transistor in 1947, the semiconductor industry
has developed with almost continuous exponential growth, i.e. according to Moore’s
law [1, 2]. The original Moore’s law [1] states that the number of transistors in the
most complex integrated circuit grows exponentially with time. Many other param-
eters either increase or decrease exponentially with time, often as a consequence of
the increased number of transistors (or vice versa), this exponential behavior also
often being dubbed as Moore’s law. As an important example the minimum feature
size in production integrated circuits has decreased exponentially [2].

From the beginning the fact that this exponential growth will come to an end
has always been considered a part of Moore’s law. In his original paper, for example,
Moore claims that “there is no reason to believe [the rate of increase] will not remain
nearly constant for at least 10 years’ [1]. In fact, it has continued at nearly the
same rate until today since the industry has been able to find ways to circumvent
technological barriers that have arisen. However, to cite Moore again, “a new and
more fundamental barrier must be confronted in the next couple of decades - the
fact that materials are made of atoms and the technology is approaching atomic
dimensions’ [2]. We are reaching the nanoscale, at which spectacular new effects
become important and related fields, such as physics, chemistry and biology, have
merged into something new. Something people find interesting enough to give it the
name nanotechnology.! Interestingly enough, Richard P. Feynman had predicted
that this field would come into being already in 1959 in a famous talk to the American
Physical Society There’s Plenty of Room at the Bottom [3].

Tn the most positive sense of this word. The field is actually huge but at the nanoscale.



2 Introduction

Within nanotechnology there are various suggestions on how to keep Moore’s
law alive, so to speak. One of these has its roots in a paper from 1974 where it
is suggested that a molecule can act as a rectifier [4]. As an extension one can
imagine an integrated circuit where the building blocks are molecules. In 1997
Reed and coworkers reported measurements of the current through a single (or few)
molecule [5], igniting a tremendous interest in what has since become to be known
as molecular electronics. Throughout the world people began to devise experimental
techniques to measure the current through a single molecule [6-9], and to model the
conductance of a molecule connected to two leads [10-12].

The field of molecular electronics is still in its infancy and even though the pos-
sible applications can be quite important one should not forget that just the physics
itself of these systems is interesting enough to warrant further examination. The
length scales involved are so small that quantum mechanics is of central importance
in modeling the conductance. This is in stark contrast to the semiclassical models
often used to model for example the conductance of a macroscopic metal. In com-
bination with the molecule, which by itself constitutes an important nanosystem in
which the electron-electron interaction is of paramount interest, we have a system
rich of interesting physical effects, yet to be fully understood. In this thesis we report
our first steps in a journey towards a complete understanding of these systems.

The ground state of an isolated molecule is usually obtained within the density
functional theory (DFT). We have implemented a grid-free version of DFT to obtain
the ground state of a molecule, the description of which constitutes the first part
of this thesis (cf. Chapter 2). In the second part of the thesis, which concerns
itself with conductance, we adapt the successful viewpoint of Landauer, in which
conductance is viewed as transmission [13]. In Chapter 3 we therefore describe
the Lippmann-Schwinger (LS) equation and how it is used to obtain transmission
coefficients. We begin with the simplest 1D case and then extend our discussion to
the case where a nanosystem is connected by two semi-infinite wires. The resulting
formalism is applied to the special test case of a quasi-one-dimensional quantum
wire. The formalism is in principle applicable to the simplest case in molecular
electronics, i.e. a molecule bridging two leads. In Chapter 4 we briefly review the
field of molecular electronics and discuss how one could possibly use the results of
Chapters 2 and 3 to obtain the conductance of a molecule, the problems that could

arise and how they might be solved.



Chapter 2

DFT ground state

In this chapter we explain how to obtain the ground state of a molecule. We apply
the density functional theory (DFT) using a grid-free method for the exchange
and correlation. The theorems of Kohn, Hohenberg and Sham are reviewed in
Section 2.1. It can be useful to picture the electronic structure of a molecule as being
built up by molecular orbitals. This concept and its validity in DFT is explored
in Section 2.2. In the Kohn-Sham scheme the ground state density is obtained
by solving a single-particle Schrodinger-like equation which can quite generally be
transformed into a matrix eigenvalue equation by expansion in a functional basis
set as explained in Section 2.3. Before solving these equations the basis set needs
to be specified and the relevant matrices calculated as described in Sections 2.4
and 2.5 respectively. The matrices, however, depend on the solution of the equation,
making the resulting equations highly non-linear. This is dealt with by solving these
equations self-consistently by iteration as discussed in Section 2.6. In Section 2.7

some results of DF'T calculations on a few small molecules are presented.

2.1 Density Functional Theory

Density functional theory is not just an approximate scheme for solving the many-
body Schrodinger equation. Rather, DFT is a completely different, rigorous and
formally exact approach to electronic structure theory, or more generally to any
problem of many interacting particles. In this section we briefly review the basic
theorems and approximation of DFT. We do not intend to be complete or self-

contained in our discussion (for a good introduction see Ref. [14], for a more rigorous
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but clear discussion see Ref. [15]).

2.1.1 The Hohenberg-Kohn Theorem and the Kohn-Sham

Equation

According to the Hohenberg-Kohn (HK) theorem [16] the total energy of N Coulomb
interacting! particles in an external potential ve,(r) (e.g. electrons in a molecule in

the field of the nuclei), is a functional of the density n(r)

Eln] = G[n] + < // d*rd*r’ nir)n(r’) + /dgr Vet (T)02(1), (2.1)
drey Ir — /|

and the correct ground state density is the density that minimizes this functional. In
the above expression e is the magnitude of the electron charge, ¢, is the permittivity
of vacuum and the functional G[n] is the universal functional that gives the sum
of the kinetic energy and the non-classical part of the electron-electron interaction
energy of electrons with density n(r). The second term is the classical Coulomb
interaction energy and the last term gives the energy due to the external potential.
The functional G[n| is universal in the sense that given a particle type and particle-
particle interaction it is the same functional for all external potentials. The HK-
theorem also assures us that the ground state expectation value of any operator is a
functional of the ground state density [15]. Minimizing the energy functional would
therefore in principle give the solution of the many-body problem. The HK-theorem
assures us of the existence of the unknown functional G[n] but does not tell us how
to obtain it. It is here that it is paramount that the functional G[n] is universal,
since it then becomes practical to device approximations to it.

One could approximate the functional directly and Thomas-Fermi theory can
be thought of as a special case of such an approximation. Approaches along these
lines usually suffer from inaccurate treatment of the kinetic energy part. Kohn and
Sham [17] proposed instead to separate from the functional G the kinetic energy T

of non-interacting electrons with density n(r), i.e. to write
Gln| = Ti[n] + Ex[n]. (2.2)

FE is called the exchange-correlation (XC) functional. Minimizing the energy func-

IThe theorems can be generalized to any two particle interaction without complications.
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tional using this definition of G[n], one finds that the exact ground state density
n(r) of an arbitrary interacting system can be obtained by a self-consistent solution
of the Kohn-Sham (KS) equations [15]

(_Wsﬂ+ ¢ /@%an)4z%qm¢>mﬁxm)m@>=am@> (2.3)

2m drey lr — /|
where ¢; <&y < ... and

n(r) = 3wl (24

The occupation numbers ~; satisfy

=1 g < W,
74 €0,1] & =upu, (2.5)
=0 E; > I,

where ;1 denotes the highest occupied single-particle level and

Z% = N. (2.6)

The exchange-correlation potential vy, is the functional derivative of the exchange-

correlation functional
_ Buu(n]ix)

on

The wave functions 1); are often called Kohn-Sham orbitals. Apart from being the

Uxe([n]; 1) (2.7)

orbitals that make up the density of the system under study, the KS orbitals have

no rigorous physical meaning [15].

What the above procedure amounts to is the introduction of an auxiliary system

of non-interacting electrons in an external potential

e n(r’)
Vi(r)= — [ &' Uxe([n]; 1) + Vexs (T), 2.8
(1) = o [ 1 T tellnlin) + 1) (2.9
which has the same ground state density as the system of interacting electrons in
the external potential vey(r). Even though the ground state density is the same,
the total energy is not the same in the two systems. In the auxiliary non-interacting

system the total energy is just the sum of the eigenvalues of occupied orbitals, but
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in the interacting system the total energy is [15]

Ey = Z%’Ei - 6—2 / Brd3r’ M + Exc[n] — /d?’?“ vee([nliT)n(r).  (2.9)

8mep r — 1’|

The unknown functional is now the XC-functional E,.[n] and to proceed we
need to make approximations to it. There exist many different methods for ap-
proximations. The oldest and most widely used approximation is the local density
approximation (LDA) presented in Section 2.1.2. Methods that try to go beyond
the LDA include nonlocal methods, inclusion of self-interaction corrections and gra-
dient expansions. Gradient corrected functionals are in common use in chemistry
but since we are really not interested in chemical accuracy we do not go further than

using the simplest type of an LDA-approximation.

The Kohn-Sham equation is made abstract by defining a Kohn-Sham Hamilto-
nian by
Hys =T + Vitar + Viee + Vies. (2.10)

The Kohn-Sham equation (2.3) is then seen to be the {|r)}-representation of the

abstract Kohn-Sham equation
Hs | = e |s) - (2.11)

This form of the equation will be useful in later manipulations.

There are subtle issues regarding the domain of the functionals and their ex-
act definition. The density has of course to be positive, but not all positive func-
tions are ground states of some Hamiltonian. Functions that are a ground state of
some Hamiltonian are called v-representable. Since not all positive functions are
v-representable one has to ask if one can extend the domain of the functionals to
non v-representable functions. These are two examples of these subtle points that
arise when one seeks to make DFT more rigorous. We will not go into these details
but refer the interested reader to the book of Dreizler and Gross [15].
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2.1.2 The Local Density Approximation

The local density approximation (LDA), a commonly applied approximation to the
XC-functional, is defined by

EXPA[n] = /dgrn(r)exc(n(r)), (2.12)

where €, is the exchange and correlation energy per particle of a uniform electron

gas of density n. The corresponding XC-potential becomes

oA () ) = 2]

(2.13)

n—n(r)

The local density approximation amounts to assuming that the XC-energy of a
non-uniform system can be obtained by applying results from many-body theory of
uniform electron gas to infinitesimal dr portions of space and integrating. Kohn and
Sham argued that this procedure is exact in the limit of slowly varying density and
in the limit of high density [17]. Additionally, rather favorable results are obtained
for highly inhomogeneous densities such as for atoms and molecules. This has partly
to do with the fact that only the spherical average of the exchange-correlation hole
enters the XC-energy, and LDA describes this spherical average quite well even

though the overall description of the exchange-correlation hole is poor [15].

Long before the advent of density functional theory, Slater had introduced a local
approximation to the Hartree-Fock equations that can be thought of as a special
case of the local density approximation [18]; the difference being that Slater made
his local approximation in the XC-potential rather than the XC-energy as Kohn and

Sham [17]. Both these approximations give a local X« potential

oxa(fa ) = —3-—a (3”—(‘“))1/3 (2.14)

47reg 8

where in Slaters approach o« = 1 but Kohn and Sham obtained o = % This
ambiguity in where to apply the LDA approximation has led to use of « as an
adjustable parameter. For atoms and molecules the value a@ =~ 0.75 gives better

results than both & =1 and a = 2 [14].

Many parameterizations of the XC-functional exist, most of them specified for

the spin-polarized case [15|. These different parameterizations are based on various
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approximations obtained in many-body or Monte-Carlo calculations. Even though
use of a more advanced parameterizations is straightforward we have in this work
only used the Slater X a-potential and will thus not discuss these different parame-

terizations further.

2.2 The Concept of Molecular Orbitals in DFT

We now take a small detour to discuss the concept of molecular orbitals. Assuming
for a moment that the electrons in a molecule do not interact with each other
but only with the nuclei, the exact many-particle wave function would be a Slater

determinant of single-particle functions (ignoring spin):

Yi(ry)  Pu(re) ... Ya(rw)

\I/(I'l,...,I'N):\/% ¢2(:r1) ¢2Er2) QﬁZ(rN) ’ (215)

Yn(r1) ¥n(r2) ... ¥n(rw)

where 1); is an eigenfunction of the single-particle Schrédinger equation describing
an electron in the field of the nuclei. We can thus picture the electron distribution
of the molecule as being built up of orbitals, each containing a single electron (two
in case of spin). This is of course the same picture as the atomic orbital picture
that Bohr had of the atom. In correspondence, we therefore call the eigenfunctions
v; molecular orbitals.

There is of course no such thing as molecules with non-interacting electrons.
If we, however, search for the Slater-determinant that minimizes the energy of in-
teracting electrons in a molecule, we obtain the Hartree-Fock (HF) equations for
the single particle wave functions. These equations can be thought of as describing
the electrons as non-interacting but moving in an effective single-particle potential
which is a mean field of the electron-electron interaction. By construction there
corresponds a single occupied wave function v; to each electron and the concept of
molecular orbitals is therefore still well-defined.

Now, we know that the exact wave function of an interacting many-particle
system can not in general be written as a single Slater determinant, but is rather a
linear combination of such determinants. In this case we need more single-particle

wave functions to construct the ground state wave function than there are electrons,
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and the concept of molecular orbitals becomes ill-defined.

So, what about the concept of molecular orbitals in DFT? Well, DFT is not
a wave function approach but rather a completely different approach. However,
in the Kohn-Sham scheme the single-particle Kohn-Sham orbitals are well defined,
and are the single-particle orbitals that, if doubly occupied, give the correct density
of the system. We can therefore assign a single electron to a given Kohn-Sham
orbital and the concept of molecular orbitals becomes well-defined again. There are
small conceptual differences since the Kohn-Sham orbitals do not have a rigorous
physical meaning, but by our definition the concept of molecular orbitals is rigorous
and exact. In the literature the Kohn-Sham orbitals are often used, without real
justification, as the real molecular orbital. Comparison with experiments can justify
this procedure in some cases, but debate remains on this.

In the following we use the concept of molecular orbital extensively. Note also,
that if the molecule contains only one nucleus, i.e. the molecule is an atom, we talk

of atomic orbitals as usual.

2.3 Expansion in a Basis

We will now show how we can generally transform an abstract eigenvalue equation

H Vi) = €i i) (2-16)

where H is a Hermitian operator, into a matrix equation by expansion in a basis.
Later we will set the operator H to the Kohn-Sham Hamiltonian but generally it
could be any Hermitian operator (or actually any operator, but Hermitian operators
have good properties like real eigenvalues etc.).

We introduce a complete basis {|¢,) ¢ = 1,2, ...} which is not restricted to be
orthogonal, but rather the basis elements are allowed to overlap with an overlap

matrix

Svn = (bv| du)- (2.17)

The overlap matrix is Hermitian and can be shown to be positive-definite [19).

Expanding the ket |¢;) in our basis

i) = Z Cui | D) 5 (2.18)

I
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substituting into the eigenvalue equation (2.16) and projecting onto (¢,| we obtain
S cpiHuu =Y cuiSo,  p=12,... (2.19)
" @

where
H,, = (6, H|d,) . (2.20)

These equations can be seen to be a generalized matrix eigenvalue problem
HCZ‘ = €Z‘SCZ‘ (221)

of infinite dimension and is equivalent to the original eigenvalue equation (2.16).

In practice we have to cut the basis at some value pi.x = K. The matrices
H and S truncate to K x K square matrices and c; is the K x 1 column matrix
of expansion coefficients. The resulting finite dimensional generalized eigenvalue
equation can be solved by standard methods of linear algebra [19].

In the case of molecules the |¢))-s are the molecular orbitals. As discussed in Sec-
tion 2.4, one would like to use atomic orbitals as a basis. The whole procedure above
is then commonly called Linear Combination of Atomic Orbitals (LCAQO). Since one
rarely uses real atomic orbitals but at most atomic-like orbitals this terminology
is somewhat inaccurate. When using Gaussian orbitals (cf. Section 2.4) a more

accurate term would be Linear Combination of Gaussian Type Orbitals (LCGTO).

2.4 Gaussian Basis Set

When choosing a basis set, several things need to be considered, two important
ones being accuracy and speed. The perfect basis should incorporate in some sense
the behavior of the system and therefore converge with relatively small number
of elements. It should be easily obtained, well defined, easily extended and matrix
elements analytically doable. By easily extended we mean that one can easily enlarge
it to test basis set convergence.

Plane waves, a common choice, satisfies many of the requirements of a perfect
basis but in the case of atoms and molecules it has at least one important deficiency.
Plane waves are delocalized and one therefore needs very many elements to describe

the inhomogeneities of a molecule and this large number can limit the size of the
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system to be treated.

A more physical choice is to use the observation that since molecules are made of
atoms, one would expect the molecular orbitals to resemble the union of the atomic
orbitals of its constituents. That is, a linear combination of atomic orbitals, each
centered on the corresponding atomic center, should describe the system quite well.?

The real atomic orbitals are not easily obtained since they are solutions of
a many-particle Schrédinger equation. Instead, one could think of using non-
interacting atomic orbitals, i.e. the solutions of the Schrédinger equation of a single
electron in the field of a nucleus with atomic number Z. These are the well known
hydrogenic functions which in spherical coordinates centered at the nucleus can be

written as
S (r) = Yin (0, ) RV (r), (2.22)

where Y}, are the spherical harmonics and the radial functions are given by

473 (n—1—11"% r22r\! Zr YA
rt) = | (B e (2D i, (B2, e

agn*  (n+1)! nag nag nag

Lilfll_l are the associated Legendre polynomials, ay the Bohr radius and n, [ and m
the conventional hydrogenic quantum numbers. The hydrogenic basis is well defined
and easily extended but matrix elements between basis elements on different atoms
include many different centers (in the Hartree term one can have up to four different
centers) and can be impossible to do analytically. This makes the hydrogenic basis
unfeasible.

The complicated nodal structure of the Legendre polynomials makes the basis
orthogonal on a single center, but since we have multiple centers the elements do
overlap anyhow. There is therfore no need to keep this complicated nodal structure,
and one can retain only the highest power of r and allow the exponent in the
exponential to vary. This procedure leads to the Slater type orbitals (STO) [20].
Even with their simplified structure the STO’s matrix elements are difficult to do
analytically.

In 1950 Boys proposed the use of Gaussian functions (Gaussian times a polyno-
mial) and showed that with their use all Hartree-Fock matrix elements could be done

analytically [21]. We will not try to review the large number of Gaussian basis sets

2Even though the Kohn-Sham orbitals do not have a rigorous physical meaning, resemblance
with the Hartree equation and results from calculations indicate that this is also a good idea in
LDA DFT calculations.



12 DFT ground state

available in the literature but rather only describe the general features of the kind of
basis we have chosen to use (for a general review of Gaussian basis set see Ref. [20]
and [22], a good review of the basis set we use along with general considerations in

molecular orbital theory can be found in Ref. [23]).

For each atom in a molecule we define a set of Cartesian Gaussian functions that

in a coordinate system centered on the corresponding atom can be written
g(r;n, () = N(n, O)a"y™ 2" exp(—(r?), (2.24)

where n = (n,,n,,n,) is a set of nonnegative integers and ( is the exponent of the
Gaussian. N is a normalization constant. The sum n, + ny +n; is closely related to
the total angular momentum quantum number and is therefore often refered to as the
angular momentum. Correspondingly n is refered to as the the angular momentum
index. In the spirit of the above, Cartesian functions with angular momentum

0,1,2,... are termed s—,p—,d—, ... type functions respectively.

Explicitly, the Cartesian Gaussian functions of the lowest angular momentum

e = (%) e, (2.29
(0 = (2 o), (2.26)
g6 = () g (227

and so on for g, , 9., 9d 2> 9d 25 Yduy> Jda- and gq,.. Here, we have replaced the
angular momentum index with the commonly used spectroscopic notation. Note
that the six d-type Gaussian orbitals do not have the same angular symmetry as the
hydrogenic orbitals (i.e. as the spherical harmonics) but can be linearly combined

to obtain the set of five d-type spherical harmonics. The sixth linear combination
gr2 = \/5(93[:2 + Gy2 + gz2) (228)

yields an s-type function.

A single Gaussian does not mimic the behavior of an atomic orbital very well and

many elements are needed if one uses single Gaussians as basis elements. Instead
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one can use a fixed linear combination of Gaussian type orbitals as basis functions.
An s-type function would then be expanded in terms of s-type Gaussians, p-type in

terms of p-type Gaussians etc., such that our basis elements become

an
Oni(r) = Z dnt £ 91(Cn ke, T, (2.29)
=1

where N,,; is the number of Gaussians. The terminology used for this combination
is contracted Gaussian and N,; is called the length of the contraction. In this con-
text, a single Gaussian is sometimes called a primitive Gaussian. Throughout the
calculations the coefficients d,; ; and (, , are kept fixed. We should note that nei-
ther single Gaussians or any finite linear combination of Gaussians have the correct
exponential tail or satisfy the nuclear cusp condition [20]. In spite of this, relatively
few contracted Gaussians are needed for a given level of accuracy, in fact even fewer

than the number of Slater type orbitals needed [22].

A minimal basis set would contain one s-type function for each hydrogen (H)
and helium (He) atom and two s-type and three p-type functions for the first row
elements lithium (Li) to neon (Ne). In such a minimal basis there is only a single
function of each symmetry (e.g. 1s, 2s and 2p,) and the basis cannot expand and
contract in response to different molecular environments. Since it is mostly the va-
lence electrons that are responsible for bonding in a molecule, we give the basis more
adaptability by using two valence functions of each symmetry (see Figure 2.1(a)),
one that is more contracted and one more diffuse. Only one function is used to
describe the quite inert core electrons. Basis sets of this kind are in the literature

termed split-valence basis set.

The basis elements are all centered on the atoms but in a molecule the charge
can move non-uniformly from the atoms, i.e. the molecule can polarize. To allow
the basis to take this effect into account we add basis functions of higher symmetry;
three p-type functions for H and He and the six d-type functions for the first row
elements. In the case of hydrogen, for example, one can see that a mixture of say
a s-type function and a p,-type displaces the center of the basis function along the
x-axis (cf. Figure 2.1(b)). Basis functions like these are called polarization functions

and the basis a polarization basis set.

We are now in position to completely specify the basis sets we use. They are

polarization split-valence basis sets introduced by Pople et al. [24-26], called 6-
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a) b)

O+ :O O+oc@-oO

Figure 2.1: Schematic view of a) how split-valence set allow the basis set to expand and
contract in response to different molecular environments and b) how addition of polariza-
tion functions can allow for displacement of the center of the basis functions.

31G, 6-31G* and 6-31G**. The number 6 means that the core basis functions are
contractions of six primitive Gaussians (N,; = 6), 31 means that one of the split
valence functions is a contraction of three Gaussians (NV,; = 3) and the other a single
Gaussian (N,; = 1). The first star stands for addition of polarization functions on
the heavier elements and the second star denotes addition of polarization functions
for H and He. So, for hydrogen and helium, which have only valence electrons, the

basis elements are

Phs(r Z dls 19s(Clps 1) (2.30)
/1,s<r) = gS( {/57 I') (231)

with three single Gaussians as polarization functions

¢2pz/y/z (I‘) = 9p.sy» (Cp? I'). (232)

Note that all the polarization functions have the same exponent. The first row

elements have basis set functions

gbls Z dls kJs Clka ) (233)
Poy(T) Z d25 19s(Copes ), (2.34)

¢l2px/y/z (r) = Z d;p,k‘gpx/y/z(gékn r)? (235)
k=1
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/218<r) = gs< é/kur)a (236)
gpz/y/z(r) = px/y/z( gk:ar)' (237)

Note that 2s and 2p share Gaussian exponents (5, and (.. The polarization func-

tions for the first row elements are

¢3d12/y2/z2/zy/zz/yz<r> - gdac?/y?/z?/zy/zz/yz@d’ r). (2.38)

All the polarization functions have, again, the same exponent.

We could use the atomic ¢ functions directly, but to take account of changes in
the size of the atoms in a molecular environment the valence shell atomic orbitals

are rescaled
gbmolecule(r) — ,}/3/2¢a‘t0m (’Yr) . (239)

Inner shells remain unscaled.

To complete our specification of the basis we need the values of the scaling factors
v, the contraction coefficients d and exponents (. The values for the unpolarized
basis are obtained by minimizing the spin-unrestricted Hartree-Fock energy of a
single atom over the parameter space of d and « [24, 25]. The polarization exponents
are then found by using these values, adding polarization functions and finding the
optimum value of the polarization exponent for a set of small molecules. A suitable
average, that gives good results in most molecules, is then chosen [26]. The scaling
factors are also obtained by optimizing the scaling factor on some representive small

molecules and choosing a suitable average [24].

Since much of our work is done in an abstract state space we define kets for the

basis set,
an
(6nt) =D i [91(Co)) - (2.40)
k=1

The {r}-representation of these kets are the Gaussian functions described above.

2.4.1 A Closer Look at the 6-31G Family of Basis Sets

To get a better feel for the basis set we will now compare it with the more familiar

hydrogenic basis set. We begin by reminding ourselves of the explicit form of the
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first few spherical harmonics [20]

1
Y2(0,9) = ——
0 (97 90> Qﬁ’
1 /3 . ,
YE(0, ) = o\ 5 sin 0 exp(Liyp), (2.41)

1
Y20, p) = 5\/%(308 6.

By use of these the Gaussian primitives become

3/4
0.¢.1) = Y900, 0220 exp(—¢r?)

=Yg'(0, 9) RO (C, 7).

—~

o (6o0) = 05200 17109 () e

= 5 (7 (0.0) = ¥ (0.0) BE(Cr), (2.42)
n(60) = (05200 +320.2) (25) %)

= 75 (710.) +Y1(60,9) FTT(C,7),

5\ 1/4
(6.5 = V26.0) (B2 ) respl—¢r)

= Y10<97 @)RSTO (Ca T)'

The Gaussian and hydrogenic basis functions differ effectively only in the radial
part, the angular part of the Gaussians being a simple linear combination of the

spherical harmonics. The contracted Gaussians can now be written

¢1s — Z dls kR Clka )
= Y(0, so)RGT°< ),
P, (1) = — (Y71(0, ¢) Z dh, RSO (G )

(Yi'(0,0) = Y{'(6,9)) RS (r). (2.43)

Sl Sl
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Figure 2.2: Comparison of the radial distribution function r2R?, for the 6-31G family
of basis sets and the hydrogenic basis. This specific example is for the basis elements of
carbon.

Similar definitions hold for other basis elements.

With these definitions we can graphically compare the radial distribution func-
tions r2R?, of the 6-31G basis and the hydrogenic basis (cf. Figure 2.2). The first
thing to notice is the absence of the nodal structure in the Gaussian basis set. As
we have already mentioned, the main purpose of this structure is to make the basis
elements orthogonal. If nodal structure would really be needed it could be rein-
troduced into the wave function by the linear combination. The second thing to
notice is that the core functions are quite similar to their hydrogenic counterparts
reflecting the inertness of the core electrons in a molecular environment. The va-
lence orbitals are quite different, however, and not only in the sense that we have
split-valence. One should remember that the Gaussian basis elements are obtained
by minimizing the Hartree-Fock energy and therefore incorporate in some sense the
electron-electron interaction. This interaction is seen to push the electrons a little
bit further out from the nuclei making the valence functions more diffuse than in

the noninteracting hydrogenic case.

2.5 Obtaining the Kohn-Sham Matrix

Having specified the basis we can use the procedure described in Chapter 2.3 with
the Kohn-Sham Hamiltonian (2.10) to solve the Kohn-Sham equation (2.11) for a

molecule. To avoid getting lost in the notation we simplify it even further, using



18 DFT ground state

only one Greek index to number the basis elements

|0u) = Z Ay 19 (Cue)) (2.44)
k=1

where there is a one-to-one map between the index p and the basis element type

(i.e. 1s, 25 etc.) and atomic center.

The matrix elements of the Kohn-Sham Hamiltonian are written in terms of
matrix elements of primitive Gaussians by inserting the contraction of the basis

elements. For single particle operators 1% (such as T and Vext) we obtain

NH Nl/

(Dul VIow) =D ) dyrdui (9,(Cui)| V 190(Ca)) (2.45)

k=1 =1

since the contraction coefficients d are real. In the case of molecules we apply the
Born-Oppenheimer approximation which amounts to assuming that the nuclei are
kept fixed in space while solving for the electronic structure. The external potential
is then the field of the fixed nuclei

Zo
Unucl = Z 47T60 |I‘ — Z Unucl (246)

where Z, is the atomic number of nucleus with center R,. The sum is over all

the nuclei in the molecule. The matrix elements of the nuclear attraction potential

become
N. N,
<¢u‘ Unucl |¢u Z Z d,u,kdle Z gu C,u, ‘ Unucl( a) ‘gu<<u,l)> . (247)
k=1 l=1

The classical part of the electron-electron interaction is described by the Hartree

operator
2

Vitar (1) = — / g M) (2.48)

47reg

Assuming zero temperature the electron density is given by

= S o), (2.49)

4,0CC
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which through expansion (2.18) becomes

n(r) =D exicnidn(r)go(x), (2.50)

1,0CC Ao

where we have used the fact that the expansion coefficients and basis elements are
real. The matrix elements of VHM can by use of the contraction therefore be written

in terms of primitive Cartesian Gaussians as

NH Ny NA No

<¢u‘ VHar |¢l/> = Z Z C)\iCoyi Z Z Z Z d,u,kdu,ld)\,mdo,n

1,0CC Ao k=1 I=1 m=1 n=1 (251)

X <gu(Cu,k‘)gu<Cu,l>| |92 (Cnm) 9o (Com))

where we have introduced the Gaussian electron repulsion integral (ERI)

<gu(CM7k)gu(CV,l)| |g>\(©\,m)ga(€0,n)> -
e? // Brd3r’ gﬂ(Clhk? 1) 90 (Gt T)IA(Crms ¥') 9o (Con, 1) _ (2.52)

drey lr —r/|

By introduction of a density-matrix

Py = Z CiCoyis (2-53)

4,0CC

the matrix element is reduced to

NH Ny NA No

<¢,u| VHar |¢u> = Z PAJ Z Z Z Z d,u,kdu,ld)\,mdo,n (2 54)
Ao :

k=1 l=1 m=1n=1

X (g r) g ()] 1gr(anm) 9o (on)) -

We have so far managed to reduce the first three terms of the Kohn-Sham matrix
to a sum of matrix elements of primitive Gaussians which, as Boys had shown, can
be done analytically. Instead of doing the integrals directly the matrix elements
are obtained with recursive relations by Obara and Saika [27] which are reviewed in

Appendix A.
The remaining term in the KS-matrix is the XC-potential. This potential is usu-

ally quite a complicated function of the density (the leading term is the density to

power one third) and a straightforward insertion of the expansion of the density in
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the basis elements will lead to powers of large sums which are not easily treated. In-
stead, people often either do the integration numerically or expand the XC-potential
in an auxiliary basis. Neither of these methods are ideal (no method is), the former
can suffer from numerical noise and be time consuming. In the latter one needs to
introduce an auxiliary basis but might still have to do difficult integrals. Ideally,
one would like to do the XC-matrix elements analytically as all the other elements.
This can actually be done by using matrix manipulations, described in the next
subsection, which only require integrals of primitive Gaussians. We have thereby
managed to obtain the KS-matrix by analytical methods by the use of contracted

Gaussians.

2.5.1 Grid-free Method

The grid-free method described here was advocated in 1993 by Zheng and Almlof [28]
and later taken up by Berghold et al. [29]. We will begin by discussing the method

generally and end with the specific case of our basis.

Assume we want to calculate matrix elements of the form

Xl F(D)Ix0) = /d3’f’xu(r)f(n(r))xu(r) (2.55)

where f is any function of n, for example the Slater Xa-potential

F(n()) = vxalr) = —31—a (3”(”))1/3, (2.56)

4meg 8T

and the kets {|x)} can belong to any complete basis.

Think of the density as a multiplicative operator, such that

M) = (el = / 0 (1) (1) o (1), (2.57)

Note that the matrix of density M is not the same thing as the density matrix.
Transforming our basis into an orthogonal basis with a transformation matrix X,
satisfying

XTSX =1, (2.58)
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the matrix of density transforms as
M[n] = XTM[n]X. (2.59)
In the orthogonal basis M is diagonalized by a unitary matrix U, such that
M(n] = UAUT, (2.60)

where A is a diagonal matrix of eigenvalues of M. By standard linear algebra?

f(M[n]) = UF(A)U". (2.61)
Transforming back to the original basis we obtain
f(M[n]) = SXUf(A)(SXU)T (2.62)
where we have used that ST = S and from (2.58) that
X '=XTs. (2.63)

Now, one can show (assuming that f can be written as a Taylor series, cf. Ap-

pendix B) that since the basis is complete
M{[f(n)] = f(MIn]), (2.64)
and we obtain our final result
M[f(n)] = SXUf(A)(SXU)T. (2.65)

In the above derivation we have often used the fact that the basis is complete. In
molecular electronic structure calculations the basis sets used are usually especially
made to describe the electronic structure of the molecules and there is no a prior:
reason for them to be also good in the above manipulations. Experience, however,
shows that good results are obtained using the same basis sets [28, 30]. In the case

of a contracted basis set it can be advantageous to uncontract it and carry on the

3In principle the matrices are infinite, which is not the case in standard linear algebra, but in
practice they are truncated.
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matrix manipulations in the uncontracted basis. At the end of the calculations one
contracts the basis again to obtain the correct matrix elements [30]. This is the

route we have chosen to follow.

In the uncontracted basis the elements of the matrix of density are

M) = (9(C)| 19,(6.)) = / P (Gt (Gr). (266)

Inserting the density with the density matrix and using the contraction expansion

this becomes

MHV [n] = Z P)xo Z ZU d)\,mdo,n <gM<CM>gA(<A,m)g0(CU,H)QV(CV)) ) (267)

where

<gM(CM)g>\(C>\,m)ga(CO,n)gu(Cu» =

(2.68)
/ 1 gu(C 1) A Crms D)o (G 1) (G )

is a four center overlap matrix element. The four center overlap matrix is cal-
culated by the same method as other matrix elements of primitive Gaussians (cf.
Appendix A.1).

All that remains is to specify how we obtain the transformation matrix X. There
are of course many solutions to Equation (2.58) corresponding to the many choices
one has in orthogonalizing a given basis set. There are two ways that are in common

use [19], symmetric orthogonalization that uses the inverse square root of S
X =512 (2.69)
and canonical orthogonalization
X =Ughg™ Y2 (2.70)

where Ug is a matrix that diagonalizes S and Ag is the corresponding diagonal
matrix of eigenvalues of S. It is easy to see by straightforward insertion that both
of these choices are solutions. We have chosen to use the former one. If the basis

is nearly linearly independent some of the eigenvalues of S can approach zero and
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the procedure can be unstable. Our basis seems not to include these near linear

dependencies.

2.6 A Self-consistent Solution of the Kohn-Sham

Equation

We have shown how to obtain the Kohn-Sham matrix by analytical methods. The

overlap matrix S is obtained similarly by insertion of the contraction

NH Ny

<¢u| ¢V> = Z Z dmkdu,l <9M(Cu,k)| gu(Cu,l))- (2-71)

k=1 =1

All matrices needed for the solution of the Kohn-Sham equation (2.11) have therefore
been obtained.

The Kohn-Sham matrix depends through the Hartree and XC-potential on the
electron density n, i.e. it depends on the solution of the Kohn-Sham equation. We
have therfore to solve the equation self-consistently (cf. Figure 2.3). We begin by
obtaining an initial guess for the density matrix by solving the Kohn-Sham equa-
tion without electron-electron interaction for the molecule. This is not always a
good guess and one could sometimes obtain a better result by using more advanced
method to obtain an initial guess, like semi-empirical extended Hiickel-type calcula-
tion [19]. Our non-interacting guess seems to be sufficient in the molecules we have
calculated. Having obtained an initial guess, we calculate the Kohn-Sham matrix
and solve the Kohn-Sham equation. If the solution is different from the initial guess,
by some measure, we calculate a new Kohn-Sham matrix using the new solution or
a blend of the new and old solution. This is repeated until convergence is obtained.
We have used the mean square difference between eigenvalues in consecutive iter-
ations as a measure of the convergence. Other measures can be used, such as the

mean square difference of the density matrix.

2.7 Simple Test Cases for DFT

To confirm our DFT calculations we have tested it on some small molecules. Our

main test was the water molecule were the total energy was minimized by par-
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Figure 2.3: A schematic view of the self-consistency process. The process is described in
more detail in the text.

tial geometrical optimization (cf. Section 2.7.1). In Section 2.7.2 we present total
energy calculations on a couple of small molecules and compare them with other
calculations. Finally, in Section 2.7.3 the ground state electron density, the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital

(LUMO) of a benzene molecule are visualized and analyzed.

2.7.1 Water as a Benchmark Molecule

As a reasonable benchmark for our DFT calculations we have chosen the water
molecule (Hy0O). The total energy at the experimental geometry falls between the
energy obtained with Hartree-Fock and coupled cluster calculations (cf. Table 2.1).
This is a trend that is also seen in other molecules and discussed in Section 2.7.2
Partial geometry optimizations were performed by minimizing the energy as a
function of one of the degrees of freedom (Ron or fxon) keeping the other fixed
at its experimental value. Figure 2.4 shows a plot of the energy as a function of
the geometrical variables; exact values of the minima are found in Table 2.1. The
experimental values fall between the values found using the 6-31G basis and the

6-31G™ basis, the former giving higher values and the latter lower in both cases.
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Figure 2.4: The total energy of a water molecule as a function of hydrogen-oxygen bond
length (left) and as a function of bond angle (right). Only one geometrical variable is
varied at a time, the other being held fixed at its experimental value. All calculations are
made using the Slater X a-potential with a = 0.75.

Polarization functions are seen to be important to obtain the geometry reasonably,
but we are still bit off in the bond length. Considering the simple approximation

used for the XC-potential the results are acceptable.

It can be interesting to see how the electrons distribute themselves around the
molecule, i.e. to visualize the electron density. Since the density is a function of
the three spatial variables one has to either plot the density in a plane or plot an
isosurface. In Figure 2.5 we have plotted a contour plot of the density of water in
the plane of the nuclei using both the density and the density times the squared
distance from the origin. The latter quantity includes the volume element of the

spherical coordinates in the given plane.

The molecular orbitals of the water can be analyzed further by calculating the

weight of the atomic orbitals in it. Since the atomic orbitals are non-orthogonal this

Table 2.1: Total energy, equilibrium bond angle and bond length of water. Calculation
are made with the Xa-potential with @ = 0.75. The experimental values, Hartree-Fock
and coupled cluster calculations are from Ref. [20].

6-31G  6-31G™  HF  CCSD(T) Exp.
Total energy (Ryd) -152.390 -152.418 -152.135 -152.878
Bond angle (fuon) (°)  110.3 1044  106.2 104.2  104.52
Bond length (Ron) (a0) 1.833  1.785  1.776 1.808  1.809
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Figure 2.5: Contour plot of the density (left) and the density times the squared distance
from the origin (right). In the former a schematic of the experimental structure has been
superimposed. Both plots are in the plane of the water molecule. The contours are cut at
a given maximum value, otherwise all one would see were the core electrons.

is not a uniquely defined concept. We define it as

[{dul¥)

Vo =5 Todor

(2.72)
In Figure 2.6 we have plotted a histogram of the orbital weights for the molecular
orbital with the lowest eigenvalue and of the HOMO corresponding to the high-
est eigenvalue of an occupied state. We should remember that the eigenvalues do
not have a rigorous meaning as single-particle energies even though we continue to
use concepts such as the HOMO and LUMO. The molecular orbital with lowest
eigenvalue is mainly made of the 1s atomic orbital on the oxygen as expected of
a molecular orbital with the lowest energy. The HOMO is made out of p,-orbitals
on all atoms, mainly on the oxygen though, building up a m-orbital. The other
molecular orbitals are made from higher s-functions or a mixture of s and p,/,, the

Px/y components mainly coming from the oxygen.

2.7.2 Total Electron Energy of Some Small Molecules

To further check our calculations we have calculated the total energy of few small

molecules at their experimental geometry and compared with both Hartree-Fock and
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Figure 2.6: A histogram of orbital weights for the lowest (left) and highest (right) occu-
pied molecular orbital.

coupled cluster calculations (cf. Table 2.2). Our results are always lower in energy
than Hartree-Fock but higher than the coupled cluster calculations. The addition
of polarization functions does not seem to have so much effect. One would perhaps
expect that the polarization function are important to describe correlation effects.
The results might be interpreted such that the correlation energy is a small portion
of the total energy but we should also remember that we are using the Xa-Slater
potential description of the XC-potential which is not an accurate description. In
spite of differences in methodology and basis set the overall comparison with other
calculations are quite good.

In the comparison one should keep in mind that both HF and the coupled cluster
calculations are variational methods and therefore give upper bounds for the total
energy. Due to the approximate functional DFT can give results that are lower than

the correct total energy.

Table 2.2: Total energy in Rydbergs of a few molecules calculated with the X a-Slater
potential with o = 0.75. The geometry is kept fixed at the experimental values. We
compare with Hartree-Fock calculations in the pV6Z basis and coupled cluster calculations
carried out in the pcV(56)Z basis [20].

6-31G  6-31G*  6-31G™ HF  CCSD(T)
HF  -200.525 -200.562 -200.575 -200.1416 -200.920
HOF -350.426 -350.464 -350.474 -349.6460 -351.106
NH; -112.602 -112.631 -112.648 -112.4498 -113.128
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A

Figure 2.7: A contour plot of the total ground state electron density of benzene in the
plane of the benzene molecule (left) and the total density times the squared distance from
the origin (right). The contours have been cut at some high value since most of the density
is near the nuclei, and that would be the only density visible on a contour plot with equally
spaced contours. Because of this the nuclei appear as white circles.

2.7.3 Electron Density of Benzene

In this section we explore the density of the benzene molecule. The main reason for
examining this molecule is that it is the base of the most common molecules used in
studies of transport through molecules. It is also a bit larger than the molecules that
we have been exploring so far and therfore gives us an indication of the capabilities,
in terms of size of the system studied, of our program.

We have calculated the ground state density of Benzene using the 6-31G basis
set. To visualize the density we have projected it onto the plane of the molecule and
plotted a contour plot of it in Figure 2.7. We have plotted both the density and the
density tine the distance square from the origin.

The pictures of the total density do not convey much information. It is more
interesting to examine the density of the HOMO and the LUMO. If we look at the
value of the eigenvalue corresponding to the HOMO and the LUMO we find that
in both cases there are actually two molecular orbitals that are nearly degenerate.
Instead of picking either one of them we have made a simple linear combination of
them when visualizing the HOMO and the LUMO. In Figure 2.8 we have plotted
a single isosurface of both the HOMO and the LUMO. The m-conjugated electron

system is quite clear, being made of the p,-orbitals of the carbon nuclei. We can



2.7 Simple Test Cases for DF'T 29

zfa

Figure 2.8: An isosurface of the electron density of the HOMO (left) and the LUMO
(right) in a benzene molecule.

also see that the HOMO is a bonding state (i.e. a m-state) and the LUMO an
antibonding state (i.e. m*-state). This can be seen from the fact that the orbitals
add up in between their maximums in the HOMO case but subtract in the LUMO

case.

Just by looking at the density of the HOMO and the LUMO we can speculate that
the transmission resonance of an electron would be similar for the HOMO and the
LUMO and the current through benzene should behave similarly and be of similar
amplitude whether the transport is through the HOMO or the LUMO. However one
should remember that in the most common experiments measuring current through
molecules the benzene molecules have thiol groups attached to them. Sulfur-based

states can then alter the picture [10].

The atomic orbital weight analysis introduced in Section 2.7.1 can also be used
here. The six lowest eigenvalues of the Kohn-Sham Hamiltonian are nearly degener-
ate and therefore we add up the atomic orbital weights from these six lowest occupied
molecular orbitals. As seen in Figure 2.9 these molecular orbitals are mainly made
from the 1s orbitals on each carbon as expected for the lowest energy orbitals. The
orbitals next in energy are found to be a mixture of mainly 2s, 2p, and 2p,. In
transport considerations, we are most interested in the HOMO and the LUMO. The
isosurfaces in Figure 2.8 suggested that those were m-orbitals. The atomic weight
analysis also shows that these orbitals are almost exclusively made out of the p,

orbitals of the carbon atoms as expected for m-orbitals. In the atomic orbital weight
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analysis of the HOMO and the LUMO we have added together the contribution of
the two near degenerate molecular orbitals at that energy, just as when Figure 2.8
was obtained.

The schematic view of the benzene molecule in Figure 2.9 also shows how the
nuclei are numbered in the basis. The first elements in the basis are the elements of
C1, then C2 etc. until C6 followed by H1 to H6. For each atom the basis elements
are numbered from low angular momentum to high, i.e. first comes 1s then 2s’, 25",

2p/,, 2p! and so on.
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Figure 2.9: A schematic view of a benzene molecule (top left) numbering the atoms in
the same order as in the basis. Histogram of the weights of the atomic orbitals in the six
lowest occupied molecular orbitals (top right), the two highest occupied orbitals (HOMO,
bottom left), and the two lowest unoccupied molecular orbitals (LUMO, bottom right).
The legend in the top right histogram refers to all the histograms. 2p, and 2s refer to the
two spilt-valence orbitals 2p/, and 2p” and 2s’ and 2s” respectively.



32

DFT ground state




Chapter 3

Transport through Nanoscale

Systems

In the Landauer scheme conductance is viewed as transmission, i.e. the ease at
which an electron can transverse a sample is a measure of the conductance [13].
This viewpoint is important in systems which are so small that the wave function is
coherent throughout the whole system. In such cases one can obtain the transmission
by solving the Schrédinger equation. A description in terms of scattering is evident,
since one is interested in the transmission probability of an electron impinging on a
nanosystem. A convenient way to discuss scattering is to transform the Schrodinger
equation into an integral equation called the Lippman-Schwinger (LS) equation (cf.
Section 3.1). In 1D, this equation has a simple structure and one can learn valuable
things about it solutions by solving it for special 1D scattering potential as done both
numerically and analytically in Section 3.2. To describe a more complicated system,
such as a molecule connected to two leads, one has to go to three dimensions. How
one models the system in this case depends on the physical setup of the system.
In Section 3.3 we describe a formalism where the contacts to a nanosystem are
modeled by two long wires connected to reservoirs. In doing so we introduce the so
called scattering states, in terms of which on can connect the scattering formalism to
the Landauer formalism to obtain the conductance of the system (cf. Section 3.4).
The resulting formalism is used in Section 3.5 to calculate the conductance of a

quasi-one-dimensional quantum wire in the presence of a single elastic impurity.
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3.1 The Lippmann-Schwinger Equation

In the conventional textbook scattering setup a particle in the form of a plane
wave is incident from infinity and is scattered by a finite range scattering potential,
inducing a spherical scattered outgoing wave. In some cases it can be advantageous
to generalize our notion of scattering to the case where a scattering potential scatters
the state of the system from one eigenstate to another. Assume therefore that we

want to solve the single particle Schrodinger equation

HYs) = E[v5), (3.1)

with
H=Hy+V, (3.2)

in an open system. What is included in Hy and what in V is sometimes quite
arbitrary. One has however to assume that the potential V has a finite range or falls

off fast enough at infinity. The eigenfunctions of H, are assumed to be known

Hy [vg) = E|¢h), (33)

and we think of V as a perturbative scattering potential. Since we are considering
an open system the eigenvalues E are continuous and for each E there exists an

eigenfunction for both H and H,.
By defining the Green’s functions Go(E) as the solution to
(E — Hy+1in)Go(E) = 1, (3.4)

the solution to the single particle Schrédinger equation can be seen to satisfy the

Lippmann-Schwinger equation

We) = [v%) + Go(E)V [vi) . (3.5)

This can be confirmed by applying the operator G’a = (B - FIO) to both sides of
the solution (3.5)
Go' [We) =V [¢m) (3.6)
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leading to
(E - ﬁo) |¢E> =V |¢E> ) (3-7)

i.e. [¢)g) is a solution to the Schrodinger equation (3.1). The infinitesimal n — 0T
has been introduced to incorporate the boundary conditions as will be seen in the

following.

We can learn more about the Green’s function by looking at the special case of

a free particle, Hy = p? /2m, in three dimensional space. In {r}-space the Green’s
functions satisfies

(E — Ho+in)Go(r,v; E) = 6(r — 1'). (3.8)

This equation is similar to the Schrodinger equation for the same system, except for
the source term 6(r — r’). One can therefore think of the Green’s function as the

field at r of a unit point source in r’. The solution of Equation (3.8) is [31]

m eik|r—r’|

o2 |r — 1|

G(r,r; F) = (3.9)
where E = h?k?/2m. In the following we will interchange k£ and F freely in our
notation. The Green’s function is an outgoing spherical wave corresponding to the
boundary condition that a particle comes in and is scattered out. Using —in instead

of +in one obtains

m e—ik\r—r’\

S omh? r—r|

G, r' E) = (3.10)

i.e. an incoming wave [31]. The outgoing Green’s function, which we denote by Gy
is sometimes denoted by Ggﬂ. We will not use this notation.

In configuration space the LS equation becomes
Ye(r) = Y%(r) + /d?’r' Go(r,v'; E)V (" )g(r), (3.11)

and can be interpreted such that the potential V' (r) induces an outgoing spherical
wave at r that is proportional to both the strength of the potential and the amplitude
of the wave function. The total wave function is the sum of the incoming wave and
all the induced waves. This view, that we have an incoming part and a scattered

part, is strengthened by writing the LS equation (3.11) as

@Z)E(r) = @/f%(r) + @DSC,E(I')’ (3'12)
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where 9. (r) is the scattered wavefunction.

Continuing with a free particle in three dimensions we introduce the concept of
the T-matrix. If one is only interested in the solution in the far zone, i.e. outside

the range of the scattering potential, one can use the expansion

r-r

v — 1| ~r— (3.13)
such that ,
/ m eik(r— = )
Go(r, v, F) =~ ~ 57 . (3.14)
The LS equation thus becomes
0 m eikr 3, —ikfr’ / /
Vp(r) = Yp(r) — o2 | dTe V() Yp(r). (3.15)

where 7 is a unit vector in the direction of r. Let k' = k7 be the wave vector of the
scattered wave. Since the integral depends only on the direction of the scattering
and the energy F through k, one can define a scattering amplitude fz(k’ < k) for
scattering from k to k’ such that

. 1 ikr
V) = V) + fod =)o (3.16)
where 42
Folk 1) = === (W |V, (3.17)
The T-matrix, defined as
To(K' k) = (V| TR) = (V] (3.18)

is through Equation (3.17) directly related to the scattering amplitude and can
through the LS equation be shown to satisfy the operator relation [31]

T=V+VGy(E)T. (3.19)

In momentum space this becomes

T(K, k) = V(K. k) + / #*pV (K, p)Go(p; E)T(p, k). (3.20)
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The Green’s function is diagonal in momentum space for a translationally invariant
H,. Notice that the scattering amplitude fg is related to the T-matrix on the
energy-shell, i.e. where |k’| = |k|, but the LS equation (3.20) for the T-matrix
connects T'(k’, k) to matrix elements 7'(p, k) for all possible p both on and off the
energy shell. We also see from Equation (3.16) that the on-shell matrix elements of
the T-matrix give us all the information about the wavefunction in the far zone and

is thus equivalent to it.

In the following we will discuss the LS equation in various forms, for different

dimensions and systems.

3.2 Transport in 1D

We begin by studying the LS equation and its solution in an infinite one dimensional
system. The main reason for doing so is that the equations are simpler in 1D than
in 3D since we only have one index instead of three. The structure of the equations
and the solutions is therefore clearer. We will also learn about the complications
that arise in an infinite system as compared to a finite system. The delta function
potential is one of the simplest scattering potential we can think of. The LS equation
with this potential can be solved analytically both in configuration and momentum
space, the latter being much more difficult as one needs to introduce distribution
functions. These analytical solutions are derived in Subsection 3.2.1. Examining
these solutions we find that it is favorable to introduce the T-matrix as discussed for a
general scattering potential in Subsection 3.2.2 and the resulting L'S equation for the
T-matrix is solved analytically for the delta function potential in Subsection 3.2.3.
In the general case we need to solve the LS equation for the 7-matrix numerically.

The results of such numerical calculations are presented in Subsection 3.2.4.

3.2.1 Transmission through a Delta Function Potential Bar-

rier
The delta function potential barrier is defined by

V(z) = Vod(z). (3.21)
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The solution of scattering by such a potential using the Schrédinger equation is a

common textbook exercise [32].

Solution in Configuration Space

The physical setup is such that an electron coming from the right is scattered by
the delta function potential at the origin, part of the wavefunction is transmitted
and part reflected
1 ke r_—ikz
el = ?e'z + e kz <0, (3.22)
= x> 0.

Our problem is to find the unknown transmission and reflection amplitudes ¢ and
r. These are readily obtained using the LS equation in {r}-space. With ¢Q(x) =

e’k /\/27 and [33]

m

Go(x,2's k) = —theik‘”‘“’m/‘, (3.23)
the LS equation becomes
1 . m iklz—z!
wk(x) _ Eez/ﬂc _ ﬂ dr’ ezk\x \%5(x/)wk(x/)
L imVi (3.24)
_ ezkx . ezk\x\w (0)
o n2k g
Putting x = 0 in the above equation gives
1 h2k
= 3.25
hence we obtain the form (3.22) with
P (3.26)
B2k 4 imV, '

and r =t — 1 by continuity of the wave function.

The transmission probability is obtained as the squared absolute value of the

transmission amplitude.
k‘2
m2V2
kZ + h40

T=1t= (3.27)

and will be discussed in more detail later.
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Solution in Momentum Space

The configuration space solution demonstrated the use of the LS equation but did
not bring up anything new. By solving the same problem in momentum space
we will learn valuable things regarding scattering in infinite systems. We could
proceed by Fourier transforming the solution of the last section but that is not a

very enlightening process so we start from scratch.

Expand [¢y) in plane waves

i) = /dq%(Q) 2), (3.28)

where
1

V21

The quantum number £ is continuous since we have an infinite system. The plane

(x|k) = ek, (3.29)

waves are normalized such that

1 [ o
(k|K') = o / do e =K — 5(k — k). (3.30)
™ J_

(e 9]

Introducing this expansion in the LS equation and projecting onto (p| we obtain

Gulp) =8k =)+ [ da (1 GV la) (o) (3.31)
The matrix element is obtained by using the Green’s function (3.23)

1 , .
(p| GoV |q) = Dy /dxdx' e P*Go(z, s E)V (2')e'®™®
T

mVo [ ipeviklal
_ ipr+ik|x 332
m2k2n /_ dwe (3:32)
= =W (4 p) + i (K — p)
= R2kon b P,
where we have introduced the function
K P
i¢(k) = lim dr e = — —ind(k), (3.33)
K—oo 0 ]{j

where P denotes the Cauchy principal value. For the lack of a better name we have

chosen to call this function the Heitler zeta function [34]. This is not a real function
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but rather a distribution function, as of course the delta function. Notice that in
this special case of the delta function potential the matrix element does not depend

on ¢, and can therefore be taken out of the integral

Bu(p) = 80k =p) + Gk ) + Sk —p)0), (334

since

\/% / dgu(a) = i (0). (3.35)

By integrating Equation (3.34) with respect to p and using (cf. Appendix C)

/ dp((k £ p) = —im, (3.36)
one obtains
d(0) = Lk (3.37)
T or h2k + imVy ‘

as in Equation (3.25). The wave function in momentum space follows

- 1 mVy

Ur(p) :5(k—P)+%m(C(k+p)+C(k—p))- (3.38)

The Fourier transform of the Heitler zeta function can be shown to be (cf. Ap-
pendix C)

\/% /_Z dp e (k + p) = —V2mieT*29(Fx), (3.39)

where 0(z) is the Heaviside step function. The wave function in configuration space

is therefore

. 1 . 1 -
) — ezlm + t—1 ezlme x) + _Te—zlme —a 3.40
Uula) = = (= D) + e 0(r) (3.40)
where
fo PR (3.41)
T B2k + imVy’ '

and r =t — 1. This is of course the same solution as obtained by considerably less
labor in configuration space. There is, however, an important lesson to be learned
from the momentum space solution (3.38). In an infinite system the momentum
space wave function for the delta function potential is not an analytic function

but rather a distribution function. One can be convinced that, at least when the
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scattering potential has a finite range, this will always be the case. This should not
of course come as a surprise since similar things come up when using as basis in
wave function space functions that do not belong to it, a case in hand being the
plane waves [32]. In the case of an infinite system a straightforward expansion of
the wave function in plane waves is therefore unfeasible in numerical calculations.
One can then either make the system finite by some means, but the formulation
of scattering can be tricky in this case, or one can try to avoid the distribution

functions by reformulating the problem e.g. in terms of the 7T-matrix.

3.2.2 Transmission and the 7T-matrix

To obtain the transmission coefficient for a general finite range potential one only
needs the wave function in the far zone. As already seen in the conventional 3D case,
the T-matrix gives us this information. In 1D the LS equation (3.5) in configuration

space, the only space where the far zone can easily be defined, is
Ur(x) = Y (x) + /dx' Go(z, 2’ k)V (2" )b (2). (3.42)

Assuming that the potential V' has a finite range R we obtain for |z| > R

|v — 2| & |x| — sgn(x)2, (3.43)
hence )
N iklx —iksgn(x)x’
() on YR(x) — F25¢ H /dx'e Fsgn(@)e" 17 (1 Yoy (2). (3.44)
Note that £ > 0. Defining
k' = sgn(z)k (3.45)
we obtain .
— 0 kl k ik|z| 4
Wele) = ) + = fel = ) (3.40)
where
) 2 . 1) !
fE(k/ - ]i]) — _yezk\x\ /dﬂ?/ efzkm V(x/)wkCUI)
%k (3.47)
1m2m

= —WW%WWQ-
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As before the T-matrix is defined by

Tk, k) = R |TIeR) = (WRIV ). (3.48)
Using the LS equation

WRITIUR) = @RIV (Juf) + Co(E)V o))

R o X (3.49)
= (UplVIeR) + (pVGo(E)T 1),

since

(Wp|VGo(E)WV [tg) = (V| VGo(B)T[4}). (3.50)
Since [¢)?) is an arbitrary state vector we obtain the operator LS equation for T

~ A

T=V+VGy(E)T. (3.51)

This is of course the same equation as in the 3D case, since it is valid regardless of

dimension.

In momentum space Go(E) is diagonal since Hj, is translationally invariant. The

LS equation for T therefore takes the form
TR = VI =K+ [ oV~ p)Golrs E)T(.5) (3.5

We have also assumed that the potential V' is local and its Fourier transform does
thus only depend on the difference of the momenta. The transmission amplitude is
related to the on-shell matrix elements of the T-matrix through

m2m

t=14f(k k) =1— =Tk }). (3.53)

3.2.3 The T-matrix and the Delta Function Potential

In the case of a delta function potential the integral equation for the T-matrix can
be solved analytically. The Fourier transform of the potential

1 — Ve
V(K k)= Dy /dx TS (1) = 22 (3.54)

T 2T
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is a constant. The T-matrix is therefore independent of &’ as can be seen from

iteration (Born series)

T(K k) = V(K. ) + / dp V(K )Golp: E)V (p, k)
(3.55)
T / dpdq V(K p)Golp: BV (p, q)Golg: E)V (g, k) + ...

From this series it is evident that T'(k’, k) only depends on the energy of the electron
(or equivalently only on k), in other words the scattering is isotropic. The T-matrix
LS equation (3.52) can therefore be written

Vo Wo

T(k) = 3= + 32T (k) / dp Go(p: k). (3.56)

The integral over G can be performed by the residue theorem, giving

2m [ 1 —2mim
d k)= — d = .
/ pGo(p; k) = 73 e T TRk (3.57)
hence V)2
0/ &T
T(k) = = (3.58)
TR
The transmission amplitude becomes through Equation (3.53)
h2k
t= —"7— .
Rk +imVy’ (3:59)

as before.
A similar derivation using momentum space partial-wave expansion of matrix

elements can be found in Ref. [35].

3.2.4 Numerical Solution of the Lippman-Schwinger Equa-

tion for the T-matrix

Rarely can we solve the Lippman-Schwinger equation analytically as in the case of
the delta function potential. For more complicated potentials we might be interested
in, a numerical scheme for the solution needs to be devised. One such scheme [31, 36]
transforms the integral equation into a matrix equation by performing the integral

using a Gaussian quadrature. Special care has to be taken in treating the singu-
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Figure 3.1: The transmission probability of an electron as a function of energy for different
strengths of the potential. The plot on the left is for a delta function and the plot on the
right for a rectangular potential barrier. In the latter case the length of the potential is
kept fixed at b = 4ag but the height is varied. For each numerical solution we have plotted
the corresponding analytical solution in a dotted black line. The number of intervals is
Nintervals = 12 and nNiptervals = 40 for the delta and rectangular potential respectively.
Pmax = 30aa1 in both cases.

larities of the Green’s function. Our version of the method is described in detail in
Appendix D, here we only present the results. There are though two parameters we
need to define since they are used in the discussion. The integral in the momentum
space LS equation has its limits in the infinity. These limits are changed to some
maximum denoted by pmax. The remaining integral over positive momenta is di-
vided into nitervais SUbintervals and four point Gaussian quadrature is used in each

interval.

Delta Function Potential

As a first example, we calculate the transmission through a delta function potential
yet again. We have already seen that in this case the T-matrix elements only depend
on k. The Gaussian quadrature is therefore exact, the only approximation coming
from the introduction of ppa,. The numerical solution cannot be distinguished from
the analytical solution, even at low values of pp.x (cf. Figure 3.1). The transmission
probability is rather characterless, growing steadily from zero to one as the energy

of the incident electron is increased.
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The Rectangular Potential Barrier

A more interesting case is the rectangular potential barrier, defined by

Vo —b<x<b,
‘/rectangular - (360)
0 elsewhere.

The transmission probability can be obtained by solving the Schrédinger equation
in the different intervals and matching the solution at their interfaces (r = +b),
leading to [37]

1
Trec angular — R ) 3.61
rangl cosh? 2kb + (£2/4) sinh® 2kb (3.61)
where
w_k (3.62)
E=——— )
kK’

hk = v2mE and hx = \/2m(Vy — E). In Figure 3.1 we have plotted the results
of the numerical solution to the LS equation and compared with the analytical
solution (3.61). The numerical solution is quite accurate; only in the valleys are
there differences. Classically the transmission probability would be a step function.
In the quantum mechanical case resonances and oscillations appear as the energy is

increased. These are well known an exhibit clearly the wave nature of the electron.

Gaussian Potential

A simple case to examine is the case of a Gaussian potential

VGauss = Vo exp {— (5)2} : (3.63)

b
We have calculated the transmission probability for both attractive and repulsive
Gaussian potential (cf. Figure 3.2). In both cases the transmission is rather charac-
terless, growing steadily from zero to perfect transmission as the energy is increased.

There are no resonances or oscillations as in the rectangular potential barrier case.

3.3 Wires Connected to a Nanostructure

Having considered scattering from a finite potential in one dimension we extend

the discussion to a nanostructure connected by two infinite wires. Depending on
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Figure 3.2: Transmission through a repulsive (left) and attractive (right) Gaussian po-
tential of varying strength. In both cases the width of the potential is given by b = 4ay.
The number of intervals used are 12 and 30 respectively while pmax = 30a, Lin both cases.

how we model the wires, the number of dimensions is thus increased to two or
three. The scattering is not the conventional scattering of free particles discussed
in relation with the LS equation in Section 3.1 since the electrons are confined to
the wires. In this case it will become important to carefully distinguish between the
propagating direction (which in our case is always the z-direction) and the transverse
directions where the motion of the electrons is confined by the wire. We begin by
discussing scattering states and the scattering matrix which are defined by means of
the transverse modes (Section 3.3.1), and then show how we can obtain them with
the LS equation (Section 3.3.2) and the T-matrix (Section 3.3.3).

3.3.1 Scattering States and the Scattering Matrix

We divide the system into the two leads and the nanosystem (finite range potential)
as in Figure 3.3. Electrons are fed into the leads by two reservoirs characterized by
the quasi chemical potentials p; and pg. The leads are assumed to be ideal, i.e.
there is no scattering. We will discuss the population of electrons in the leads in
Section 3.4 but we assume here that we can have an electron with energy E in a
well defined eigenstate of the system. As before in our discussion of scattering we

neglect electron-electron interaction in the leads.

The leads are described by a rectangular waveguide, modeled with the confine-
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Figure 3.3: A schematic view of the nanosystem connected by two ideal leads to two
reservoirs. The reservoirs are assumed reflectionless. Adapted from [38].

ment, potential

0 0<ao<Ll,0<y<L,,

oo elsewhere.
The normalized eigenfunctions of the transverse Hamiltonian in the leads
2 2
p$ py
H =—*+—=—4+V 3.65
il 2m+2m+ C(:E7y) ( )
can be written
(z,7) 2 (”” ) i (”y” ) 1,2 (3.66)
nany (T, Y) = sin xlsin|—y|, ngn, =12 ... :
et 0L, L L’ :

with eigenvalues

zhmm%y:§§l<%ﬁ2+(%ﬂ1. (3.67)

In the following we simplify the notation by using just a single index n to number
the channels corresponding to n, and n,. The eigenvalues will be denoted by ¢, =
E|(ng,n,). By doing so the formalism becomes identical to the case of a 2D wire

and this will be useful later.
Eigenfunctions of the total Hamiltonian
2

H=2 4+ Vo(z,y)+ V()= Hy+ V() (3.68)

2m
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approach the solution of H, outside the range of the scattering potential, i.e.

1 ,
Oap(r) = Weﬂk"w)zxn(u), rcl, (3.69)
1 ,
P (1) = Weﬂk"w)zxn(u), r € R, (3.70)
where .
E= # + €. (3.71)

The eigenfunctions have been normalized such that they all carry the same current
in anticipation of later development (cf. Section 3.4). If ¢, < E, k,(FE) is real
and the eigenfunctions gbf IRnp A€ propagating and the channel is correspondingly
called a transverse propagation mode. If on the other hand ¢, > E, k,(F) is
purely imaginary and the eigenfunctions must be exponentially decaying to satisfy
boundary conditions. We will write k,(E) = ik,(F) and denote these so called
evanescent modes by

V() = \/mn(E)e’“"(E)zxn(rl), relr, (3.72)
p(r) = kn(E)e”"(E)an(rl), r € R. (3.73)

The evanescent modes are normalized to unity in the absence of a scattering poten-
tial.

A general eigenfunction of the total Hamiltonian with energy F, can be written
as a linear combination of gbf/RnE and gb‘z"/RnE, i.e. in the left and right lead they
take the form

+ o+ — 4=
Zn,prop an ¢LnE + Zn,prop an ¢LnE + Zn,ev a%v %vnE re L7

’(ﬁE(I') = Zn,prop b;LF(bEnE + Zn,prop b;L (b]_%nE' + Zn,ev bslv eIE%InE' r e R7 (374)
Y (r) re M.
We collect the coefficients into a vector at = (af,a;,...,a} ), and similarly
prop

for a=, b*, a® and b®’ (Figure 3.3 shows only the vectors of propagating modes).
Note that since there are only finite number N, of propagating modes, the cor-
responding vectors are finite. The number of evanescent modes are on the other
hand infinite and the corresponding vectors are therefore of infinite dimensions. In

calculations one has to limit the number of evanescent modes used.
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We now define the scattering matrix, or the S-matrix, as the matrix that connects

ingoing and outgoing propagating modes,

a~ r t a’
()N E) e e

One can see, for example by matching the wave function in different regions, that the
coefficients in the expansion (3.74) must be linearly dependent. One could however
doubt that the transmission and reflection amplitudes of the propagating modes are
linearly dependent independent of the evanescent modes. If not, the above definition
of the scattering matrix would not be applicable. Far enough from the scattering
potential, however, the evanescent modes are exponentially small and can therefore
be neglected as can their coefficients. In this case the scattering matrix as defined
above becomes well defined. By use of current conservation the scattering matrix
can be shown to be unitary [38, 39]. Comparing with the 1D case we have now
instead of the transmission and reflection amplitudes t and r, Nprop X Nprop matrices
of transmission and reflection amplitudes, also denoted by t and r respectively. t,,,
is the probability amplitude for a particle in state n in the left lead to scatter out
in state m in the right lead. ¢/ is the same amplitude for scattering in the other
direction. r,,, and r, . give similarly the probability amplitude for reflection into

state m.

We are now in position to define the so called scattering states. These are states
with an incoming wave in a single channel, such that c;, = (0,0,...,0,1,0,...), and

are denoted

+ —
¢LnE + Em,prop TmngbLmE + Em,ev TmngbeL‘;nE re L7

:E<r) - Zm,prop tmnqumE + Zm,ev tmn ng rec Ra (376)
? re M,
and
Em t;nn(meE + Zm,ev t;nn iva re La
ngu‘) - gbl_%nE + Zm r;nngbl—ng + Zm,ev r;nn %\;nE rec R7 (377)
? re M.

In the above expression n must be a propagating mode. The exact form of the
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wave function in the region of the scattering potential is not important since we
are only interested in the transmission probability. We have also used the scattering
matrix notation for the coefficient of the evanescent modes even though they are not
included in the scattering matrix. These amplitudes do however have a very similar
physical meaning and are therefore denoted as above. To obtain the conductance
only the matrix of transmission amplitudes ¢ is needed (cf. Section 3.4), i.e. we only
need to examine the scattering state ¢',. This scattering state corresponds to the
usual boundary condition of scattering, i.e. an electron impinging from the left is

scattered by a finite scattering potential into all directions (modes in our case).

An important difference between the scattering of free particles and the partially
bound ones we are looking at, is that the latter can scatter into evanescent modes
that are localized around the scatterer. If we would turn off the influx the evanescent
modes would soon be depleted since the scattering potential couples them with the
propagating modes. With the flux on these modes will however get occupied and

can have important effects on the transmission and conductance [40].

3.3.2 Scattering States and the Lippmann-Schwinger Equa-

tion

We will now show how we can find the scattering states ¢, or rather the matrix of
transmission amplitudes ¢. The scattering state ¢, is a solution to the Schrédinger

equation

2\72
(- Veloa) + V@) ) v = B (3.79)

where V(r) is the finite range scattering potential. Expanding the scattering states
in the basis {x,,} [41]

and introducing this expansion into the Schrédinger equation one obtains

2 2
Z( "0 +sm+v<r>) o (xm(@9) = EY omp(m(my). (3.80)

- 2m 922

Note that the sum over m must contain both propagating and evanescent modes.

Multiplying with x,, integrating over r; and using the orthogonality of the x-s
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(and let m < m’) one obtains

(% + k‘?n(E)) SOmE(Z) = Z me’(z)¢m’E(z)v (3'81)

m/

where we have defined

_2m

= =7 [ TG ) VE)xm (ry). (3.82)

Vi (%)
For evanescent modes we replace k,,(E) by ik, (E) in the above equation. The

potential V,,,,(z) couples different modes, both propagating and evanescent.

By use of the Green’s function G?(z,2’) defined by

(45 +R(B) ) Glele ) = oG = =) (3.89)

the solution to Equation (3.81) can be written
(D) = @)+ Y [ 42 Gl W (D). (380)
where ¢° (2) is a solution to the homogeneous equation

(5 +H08)) huste) 0. (3.85)

decided by the scattering boundary conditions. An evanescent mode can not have an
incoming wave and therefore ¢9 ;(z) = 0 for these modes. This is similar to the case
of bound states [31], even though the evanescent states are not real bound states.
One can be convinced that (3.84) is a solution by acting on it by d?/dz? + k2(E),
thereby obtaining the Scrédinger Equation (3.81). Note the difference between def-
inition (3.83) for the Green’s function and the one given in Equation (3.8). The
only difference being the normalization of the Green’s function, which in this case
becomes

0 (o) = -t ika(B)—] 3.86
Gop(z,2) an(E)e . (3.86)

For evanescent modes we get the correct Green’s function by replacing k, with ik,
as before.

In the above the transverse directions have been described by a conventional
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solution of the Schrédinger equation through the y,,-s but the z-direction, in which
we have propagating waves, has been described by a LS equation using the 1D

Green’s function.

By choosing
SOSIE(Z) = nmgb:mE(Z)v (3'87)

where n is a propagating mode

Tp(2) = ——===e", (3.88)

we will obtain the scattering states as we will now show. Using this boundary

condition and inserting the Green’s functions (3.86), Equation (3.84) becomes
4 i z—2z'
g0m<2) = (Snm(b:E<Z> — m ;/dzle km (E))| ‘me/<z/)90m/<z/)' (389)

If we now look at the limit of this equation for z > R, where R is the range of the

potential, such that the absolute value in the integrand becomes |z — 2/| = z — 2/,
we obtain
Pm(2) = L ibn(p): (5 +
X . (3.90)
_ ! —ikm (E)z /
5 2 [ T Vo (Do)

Since we are looking at the far zone the prefactor (or equivalently the Green’s func-
tion) is exponentially small for evanescent modes and we can ignore them as already
discussed. Through the expansion (3.79) the solution therefore takes the form of a

scattering state without all evanescent modes

TEE) = ) tun® g (r) (3.91)

m,prop

for all r € R, where

1 1 : /
tonn = Omn + — /dz’ By () om (2). 3.92
w2 Do) (69

The sum in the above expression does however include all modes, propagating and
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evanescent. Similarly by taking the limit 2 << —R, we obtain
e (T) = 0, 5(r) + Z Tmn @ L (T) (3.93)
m,prop

for all r € L, where
1 1 - /
= — dz ————e By () o (). 3.94
w2 | = ewl). (39

We have thus obtained the scattering states and the transmission and reflection
amplitudes of the scattering matrix. When solving for ¢,,/(2’) used to obtain ¢,,, we
need to solve the system of integral equations (3.84), which couples both propagating

and evanescent modes.

3.3.3 Scattering States and the T-matrix

Having obtained the transmission amplitudes in terms of the configuration space
wave function we now find them in terms of matrix elements of a transition operator.
Inserting the definition (3.82) of V,,,, into relation (3.92) one obtains

1
tn = O + 225 m d*r’ e tkmE)! Zsom )Xo (1))

vk (3.95)

= Omn mko| V|45 )

h2<

where we have used the expansion (3.79). Using the LS equation (3.84) in the same

expansion

ZZﬁMMMm+Z/MQMmeMMMﬂMM)
=¢&u>g/fwawnﬁmvuviﬂw
(3.96)

where

2
Go(r,xs B) = 75 3 i r )Gz 2 (1)), (3.97
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This is just the LS equation in 3D and therefore if we define a T-matrix by the
relation
(mk'|Tnk) = (mk'|V[},), (3.98)

both on and off the energy shell, it satisfies the operator LS equation
[ =V +VGy(BE)T, (3.99)
as discussed in the 1D case. In the eigenfunction basis of H, this becomes

(mk|T|nky) = (mk|V|nk,) —i—Z/dq ~(mk|V|ig)G{ (¢; E)(1g|Tnk,)  (3.100)

where we have used that in our current normalization the unity operator is

1= Z/dq 4! llg) (lq], (3.101)

and that the Green’s function becomes

. 1 1
(lq| Go(E) |I'q") = (lg| =————1'q") = o —(lqll'q)
E —Hy+1in E—hzri —g +in (3.102)
2m 1 o ’
= —75 /—(5 —q = 0 E 5 /5 —dq .
Ei—Erimy (¢—¢)=G)(q; E)ouwd(q—q)
Hence the T-matrix satisfies
Vin k q)Tzn(q k)
T (b, ki) = Vi (K, ki) dq ! ) 3.103
(k) T 2 [l (3.109

The integral can be treated the same way as we did in the 1D case. The transfor-
mation of the above equation to a matrix equation is more complicated but can be
done (cf. Appendix D).

We have therefore managed to link the transmission amplitudes to matrix ele-
ments of the transition operator 7. The result is intuitively appealing, transmission
from one channel to another is related to the transition from an eigenstate in one
channel to an eigenstate in another. This is of course the reason for the definition

and the name of the transition operator.
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3.4 The Landauer Formula

Having introduced the scattering states formalism in the last section there are only
few steps we need to obtain the celebrated Landauer formula. We assume that
the contacts are reflectionless, i.e. that an electron incident from the leads to the
contact is transmitted into the reservoir without reflection. This is a good approxi-
mation when the energy of the electron is not near a bottom of an energy band in
the contact [33]. We assume also that the leads are ideal, i.e. the electrons suffer
no scattering. The latter assumption was also used in Section 3.3. The two reser-
voirs have different quasi-Fermi energies or chemical potentials p; and g, where
i = g + eV, where V is the potential applied between the two contacts. Be-
cause of the assumption of reflectionless contacts the scattering states in the leads
are occupied according to these chemical potentials, i.e. ¢, is occupied with the
chemical potential 7, and v, according to pp. Calculating the current of each
scattering state and summing over occupied state one can derive the Landauer for-
mula' [33, 38, 42]
_2e [

=5 [ ABT(E) (B~ ) = (B~ )] (3.104)

where f is the Fermi function and
T(E) = Tr[thtg). (3.105)

For the above formula for T'(E) to be correct the equal current normalization used
earlier is essential. We have denoted explicitly that the matrix of transmission
amplitudes depends on the energy. Since the evanescent modes carry no current the
trace is only over propagating modes [39]. Note also that a factor of 2 has been
included to count for spin, and the trace does therefore not include trace over spin.

It is interesting to note that the Landauer formalism says nothing about how one
obtains the transmission probability. In Section 3.3 we discussed explicitly how we
could use the LS equation and scattering states to obtain the transmission probabil-
ity. We could also have used the 1D calculation of the transmission probability to

obtain the current in those systems. There is however one important point we have

IThis formula is sometimes called the Landauer-Biittiker formula. We have adapted the view
that the multi-probe version of this formula is the Landauer-Biittiker formula while the two probe
version shown here is the Landauer formula.
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not discussed. When defining the different chemical potential we introduce a poten-
tial that is applied between the two contacts. The scattering potential is changed
because of this additional electrostatic potential and the transmission probability
does therefore depend on the applied voltage. A more explicit notation would there-
fore be
1) =% [aETEV) HE- ) - FE-p). (100
We will discuss this point in more detail in Chapter 4.
In the limit of small potential and low temperature one can assume that the
transmission probability is independent of energy in the Fermi window and the

integral for the current can be done, leading to

I 2¢?
G = v = TT<EF)’ (3.107)

where Er is the Fermi energy and G is the conductance.

3.5 The Conductance of a Quantum Wire

The transport formalism we have been introducing will now be used to obtain the
conductance of a quantum wire with a single elastic impurity. A quantum wire
can be obtained by imposing an extra confinement on one of the free directions
of a two dimensional electron gas (2DEG), such that free motion is possible in
only one direction [42, 43]. The confinement is achieved e.g. by patterning the
heterostructure of the 2DEG by etching, applying a negative bias to a split gate
on top of the heterostructure pushing electrons from underneath the gates, or by
growing a heterostructure on a vicinal surface [43].

We need two model potentials for the systems, one for the confinement potential
and the other for the impurity potential. The confinement potential the electrons
see is in most cases rather smooth but as a first approximation we can use the 2D
version of the hard wall potential of Section 3.3. A more accurate model of the
confinement might be parabolic walls. The transverse eigenfunctions are a little
bit more complicated in this case but their inclusion in the transport formalism of
last chapter is straightforward. The results are however qualitatively the same so
we use the hard wall potential. The third type of confinement sometimes used is

the saddle-point potential [44, 45]. The impurity potential is most often modeled
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by a delta function potential [40, 46] but the main reason for this choice seems to
be simplification of analytic calculations. In our approach we can use any local
potential, but we focus mainly on a Gaussian potential.

The physical setup is the same as as schematically shown in Figure 3.3. Our
procedure to obtain the conductance of a quantum wire is thus the following. Solving
the system of Equations (3.103) for the T-matrix, using the scheme in Appendix D,
we obtain the matrix of transmission amplitudes ¢. The trace of ¢ is proportional to
the conductance through the Landauer formula (3.107). We assume that the wire
and the setup satisfies all the conditions necessary for the Landauer formula to be
valid.

In the case of a perfectly ballistic wire (no impurities), the Landauer formula tells
us that as we increase the energy and more and more modes become propagating, the
conductance increases in steps of height equal to the unit of conductance Gy = 2¢2/h.
In the presence of a impurity in the wire, there will be scattering and the conductance
will not vary in this steplike way. If there were no coupling between the modes we
would expect the conductance of each mode to rise gradually to one, with perhaps
some oscillations, just as in the 1D case already discussed in Section 3.2. When there
is coupling between modes the structure can be drastically different from the one
we see in the 1D case. In the next subsections we will examine the conductance of a
quantum wire in the presence of a single impurity of Gaussian type (Section 3.5.1)

and delta function potential type (Section 3.5.2).

3.5.1 Scattering by a Gaussian Potential

The first model potential for the impurity potential we examine is the Gaussian
potential
V(z,z) = Voe ole—)’=2%) (3.108)

where V; gives the strength of the potential, a~!

is a measure of the range of the
potential and (x;,0) is the location of the center of the potential. Unless otherwise
noted we have chosen x; = L, /2, i.e. the center of the potential is in the middle of
the wire. In Figure 3.4 we have plotted this kind of potential for a wire of length
L, = 4ag using Vy = 1 Ryd and o = 2a,>. For definiteness we note that a 2DEG is
often formed at the GaAs side of the interface between AlGaAs and GaAs. In GaAs
a, = 9.79 nm and Ryd = 5.93 meV, hence a wire with L, = 4aq is approximately

39 nm wide, an experimentally plausible width.
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Figure 3.4: Gaussian scattering potential in the middle of a quantum wire. Infinite walls
at the edges of the wire (x = 0 and & = 4ap) are not shown. The potential on the left

(right) is repulsive (attractive) of strength V) = 1 Ryd (V) = —1 Ryd) and the exponent

« is in both cases equal to 2a52.

The conductance of a repulsive Gaussian potential is shown in the left panel of
Figure 3.5. Comparing with the transmission of a 1D Gaussian in Figure 3.2 we ob-
serve that qualitatively the conductance is the same for each channel. As the energy
is increased more and more channels contribute to the conductance, each channel
contributing one quantum of conductance GGy when completely open. Coupling be-
tween transverse modes does not seem to alter qualitatively the picture we would
expect for independent channels in a repulsive potential. The smoothing of the steps
due to inelastic scattering is similar to what was seen in the first measurement of the
quantizes conductance effect [47]. There are more effects that can cause smoothing

but our results show that inelastic scattering is one of them.

Figure 3.5 also shows the conductance of an attractive Gaussian potential which
is qualitatively very different from the 1D case since resonance dips appear in the
conductance. These can be understood from a simple mode coupling model which

we will now briefly review.

The coupled-channel equation (3.81), which in the present case we write as

2m dz?

(_h—d— B+ z—:n) () = = 3 Vi (2)pms(2) (3.109)

where V,(2) = [ da xn(2)V(r)xm(z), is an exact description of our system and
has been solved accurately using the LS equation in Section 3.3.2 and 3.3.3. We

now take a different route, focusing on the resonances (dips) [44, 45, 48|. Choosing
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Figure 3.5: Conductance in units of Gy = 2¢2/h as a function of energy for a repulsive
Gaussian potential of varying strength (left) and attractive Gaussian potential with V) =
—1 Ryd (right). The inset in the latter has the same units on its axes as the main plot and
shows the first resonance in more detail. In both cases the quantum wire has L, = 4ag and
the scattering potential has o = 2a, 2. Calculations were performed with total number of
modes Nmodes = 8, number of intervals nintervals = 12 and pmax = 30a, 1

an energy in the range ¢; < E < g9, only channel n = 1 will have a propagating

solution in the absence of off-diagonal coupling (i.e. if V,,,,, = 0 for m # n), given by
n? d? n n
——7 + ‘/11<Z) + &1 \I’E<Z) = E\I/E<Z) (3110)

U= (z) is defined similarly as ¢, (Equation (3.88)) except for the potential term

V11(2). Since the range of the potential is finite the asymptotic form is the same

N tbgeiiklz Z—>:i:OO,
UE(z) =4 . (3.111)
eizklz +Tig6$zk1z 2 — F00.

We have changed the normalization in agreement with the literature [45, 48]. The
transmission and reflection coefficients P8 and r8 are the ones that a 1D system
in the potential V}; would have, i.e. they describe non-resonant scattering in the

channel.

Since the energy is lower than €5 and we are assuming that the potential is

attractive, and thus V,,,, are negative, the uncoupled channel n = 2 has at least one
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bound state with energy £, given by

h? d?
Further assuming £ to be close to the bound state energy Fy and that no other
channel has a bound state near Ej, we can neglect all the other channels in the

coupled-channel equation (3.109), which then reduces to the system of equations

h? d?
|:E — &1+ %@ — ‘/11<Z):| gOl(Z) = %2@2(2), (3113)
h? d?

At least two routes have been taken in solving these equations and both lead to the

same result. Nockel and Stone [48] use the ansatz
p2(2) = AP (2), (3.115)

i.e. they assume that even in the presence of off-diagonal coupling the electron dis-
tribution of the second channel resembles the density of the bound state closely. The
system of equations is then solved by introducing mode Green’s functions defined
by

R > -
G,=|E—¢,+ R Von(2) +in| (3.116)

and using a LS equation for each channel. Gurvitz and Levinson [45] use the spec-
tral representation of @2, but close to the resonance £ — FEj, assume that the
contribution of the bound state ®; dominates such that
5 | Po) (Do
Gy = ————. 3.117
> E—E, (3.117)
Both approximations lead effectively to the same answer, i.e. that the conductance

near the resonance is given by

(E— Ey— A —§)?

(3.118)
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where Ejy + A is a shifted quasi-bound state energy, the width of the resonance I is
given by
(Po| VarG1Viz |Bg) = A — T, (3.119)

and ¢ is similarly due to coupling between the bound state &, and the propagating
states UZ. Observe that the conductance goes to zero at £ = Ey + A — 6.

The physical meaning of the above model is that due to the bound state from
channel 2 the propagating mode is resonantly backscattered causing a decrease in
the conductance. Qualitatively the same behavior is obtained if one includes more
evanescent modes [45]. This model has not, to our knowledge, been extended to
energies were more than one mode is propagating. However, using symmetries and
the scattering matrix, Nockel and Stone [48] have obtained similar results. One can
therefore generalize and say that the dips in the conductance of Figure 3.5 are due

to coupling with quasi-bound states.

The above model is applicable for energies in the first step but as clearly seen in
Figure 3.5 there is no dip there in our results. This is not in contradiction to the
model because of symmetry reasons. The width I" and the energy shifts A and § are
related to matrix elements of the operator Vi5(z) as explained above. The normal
modes Y, have a definite parity with respect to the center of the wire, xo,11 are
even and x», are odd. Since the Gaussian potential is even the operator Vis(z) = 0.
The conductance at the resonance (3.118) therefore reduces to the non-resonant
conductance G' = G|tP8|2.

The absence of the dip in the first subband is of course a special case for a
Gaussian potential with center in the middle of the wire. If the center of the potential
is moved closer to the edge of the wire, the coupling between the modes will become
different from zero and the resonance will reappear. Examining the coupling matrix
element Vi, we observe that its amplitude will increase as the center is moved from
the middle, reach a maximum approximately between the middle of the wire and
the edge and then decrease again. According to the simple mode coupling model,
this would mean that the resonance should broaden and then become narrow again
as the center is moved. Similarly the matrix element V5 responsible for bonding
has a maximum approximately between the center and the edge of the wire, and
a minimum at the edge. The resonance should therefore get lower in energy as it
broadens, and then move to higher energy as it narrows again. The left panel of

Figure 3.6 shows the conductance as the center of the Gaussian potential is varied.



62 Transport through Nanoscale Systems

175 4 o7t .
o o
O 15 49 o5+ .
o ®

1.25 4 o025t .

1
4.9 51 53 55 231 235 2.39 243 247
E/Ryd E/Ryd

Figure 3.6: A closer look at a the first resonance as the center of the Gaussian potential
is varied (left) and at the second resonance as the strength of the attractive potential is
varied (right). In the former case the strength is kept fixed at V5 = —1 Ryd. Both cases
are for 4ag wide wire and the potential has o = 2ay 2. Calculations were performed with
total number of modes Nmodes = 8, number of intervals nintervals = 12 and pmax = 30a, 1

The behavior is exactly the one described above.

The resonances in the conductance of the attractive potential in Figure 3.5 are
extremely narrow. The resonance in the inset has for example full width at half
maximum on the order of 4 mRyd, i.e. around 21 peV. Seeing resonances of this width
in experiments is most likely a formidable task. As already mentioned, the width of
the resonance depends on the coupling strength. Hence, increasing the strength of
the potential while keeping all other parameter fixed the resonance should broaden.
The binding energy of the quasi bound state will also increase and as an effect the
resonance should move away from the energy of the next mode, i.e. to lower energy.
Both of these effects can be clearly seen in the right panel of Figure 3.6 where we

have plotted a close up of the resonance just before the third transverse mode.

3.5.2 Delta Function Potential
The delta function potential
Viz,z) = Vod(z — x;)0(2), (3.120)

is, in spite of its singular nature, very common in the literature. This is most
likely because it can simplify analytical calculations, but numerically it can be a

nuisance. We mainly study it as a comparison with the literature. We chose the
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Figure 3.7: Conductance through a quantum wire with a delta function impurity potential
as a function of energy. The total number of modes Npyodes used in the calculation is varied
but the number of intervals and maximum momentum in the LS integral is kept fixed at
Nintervals = 12 and pmax = 30a, 1 respectively.

same parameters as Bagwell [40], i.e. L, = 3.06ap and V; = 1.055 Ryda?. In
Figure 3.7 the conductance as a function of energy is plotted for these parameters,
using more and more total number of modes. The overall correspondence with the
results of Bagwell is quite good except that the conductance is perhaps a little bit
lower in his case. Increasing the number of evanescent modes in the calculation
decreases the conductance and we have only gone up to 50 total number of modes.
Increasing the number of modes more than that increases the computing time and
memory consumption very fast, and we have therefore not done it. Bagwell argues
that one needs 100 modes so that the contribution of the next evanescent modes
are negligible [40]. This is a case of the numerical nuisance of the delta potential
mentioned above, and should be compared to the Gaussian potential. There we
only use eight total number of modes and increasing the number of modes has very
small, negligible effect.
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Chapter 4
Molecular Electronics

In the last two chapters we have discussed the two main parts of this work, grid-free
ground state of molecules and a Lippmann-Schwinger transport formalism. In a
project inspired by the interesting field of molecular electronics it seems fitting to
discuss briefly the field and its relation to our work. This chapter serves twofold
purpose. Firstly, it ties the two parts of our work together. Secondly, we can look
forward and examine how one would take the next steps towards understanding
transport through molecules using the LS formalism. We also briefly compare our
approach to the most common approaches in the literature. By no means is the

discussion in this chapter intended to be thorough or detailed.

4.1 The Birth of a Field

Already in 1974 Aviram and Ratner suggested the use of molecules as active devices
in molecular electronics and showed that a particular molecule could function as a
diode [4]. The field did not catch on though, since experimental techniques were
not advanced enough to measure the effect and the interest of the community lay
elsewhere. In 1997 the breakthrough came, when Reed et al. [5], building upon the
mechanically controllable break junction (MCB) method of Van Ruitenbeek and
coworkers [49]|, were able to measure the current through potentially one (or at
most few) molecule. More measurements followed, using the MCB method [7, 50],
scanning tunneling probe measurements [51] and other methods [6, 8, 52]. Ruiten-
beek and coworkers have even managed to measure the conductance of a hydrogen
molecule using MCB [9].
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Having something exciting to understand and explain such as transport through
molecules, the theory part took off. Simplified models have been used but all the ab
wnitio calculations are DFT based. Most often people use non-equilibrium Green’s
functions (NEGF) methods to obtain the current [12, 33, 51]. Another approach
is the scattering formalism through the Lippmann-Schwinger equation, a simple
variation of which we have already discussed and whose ideas originate with N.D.
Lang and coworkers |11, 53]. This approach has not been taken up by many and is
not nearly as popular as the non-equilibrium Green’s function methods.

The rapid advance of the field of molecular electronics has aroused much inter-
est from physics, chemistry and related fields, who have merged in a new field of
molecular electronics. It is a young field and in spite of the rapid advances, theory
and experiment do not agree completely. There are many open questions to be an-
swered, and things to be explored. In the following sections we will discuss the most

important questions related to our project and approach.

4.2 Obtaining the Current Through Molecules

The basic idea of the LS approach is to use the field of the molecule as a scattering
potential in the equations of chapter 3 to obtain the current. The realization of this
is not as straightforward as it sounds. In this section we will discuss some of the

conceptional issues involved in a full scale calculation based on this approach.

4.2.1 The Contacts

How do we model the contacts? This is an important question, and perhaps the most
important one in the field at the moment since the exact geometry of the contacts
is not known experimentally. Calculations have shown that both the geometry, the
number and type of atoms in the contacts can alter the shape and absolute value of
the current quite extensively [11, 50, 54|. In the NEGF methods the semi-infinite
contacts are taken into account by inclusion of extra self-energies [33]. In the LS
approach the contacts are usually described by the jellium model. This is implicit
in our approach. Often, a part of the contact is included in the molecule, making a
so called extended molecule. This can be advantageous since the the contacts will
not have reached their bulk values right at the molecule lead interface, but these

bulk values are used to obtain the lead self-energies. Similar things can of course be
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done in the LS approach.

As a first approximation we would most likely use only the molecule and devise
some potential barriers to imitate the work function for electrons to go from the
metals to the molecule. These would then be a part of the scattering potential. In a
full scale calculations the effect of the contacts would be included self-consistently,

thereby obtaining the electrostatic potential barriers as a part of the solution.

4.2.2 The Applied Voltage

The exact electrostatic profile is an active issue of discussion [55]. The simplest
model assumes that the electrostatic potential drops linearly from one lead to the
other, from zero to the applied voltage V. Ideally one should calculate the elec-
trostatic potential profile self-consistently [11]. But even using the simplified linear
model, the applied voltage raises some questions in our scattering approach, which
in chapter 3 was only at zero applied voltage.

It should be clear that one can not include this applied potential as a part of
the scattering potential since it would then not fall rapidly enough at infinity for
the scattering formalism to be applicable. To only include it as a difference in the
chemical potential of the right and left reservoir seems to crude an approximation,
but might serve as a starting point. The only way seems to be to include it as a
part of Hy in the LS approach. How this would be done is not unique. One can
include all the electrostatic potential in H, [11, 54] or one could only include a step
function, the rest being a part of the scattering potential. Either way, this induces
some changes in the analytic work of chapter 3. The most obvious one being that
the Green’s function corresponding to H, is not as analytically simple as in the case
of zero potential. Otherwise, the procedure is the same, the only question being

how soon one has to introduce numerical work.



68

Molecular Electronics




Chapter 5
Conclusions and Summary

We have applied grid-free DFT methods to obtain the ground state of molecules. In
this method the molecular orbitals are expanded in a Gaussian type basis set and
matrix elements of the exchange-correlation potential are obtained by matrix manip-
ulations (diagonalization etc.). One thereby avoids any use of numerical grids often
used in DF'T calculations. We have used our method to calculate ground state ener-
gies of various small molecules, water, HF, HOF and NHj, the results usually being
in between Hartree-Fock and coupled-cluster calculations. These are reasonable re-
sults especially since we use the simple Slater X o functional as an approximation to
the unknown exchange-correlation energy functional. Geometrical optimizations of
water also give results comparable with experiments. We thus conclude that we have
an working DFT implementation, capable of obtaining the ground state of smaller
molecules (the largest molecule we have calculated is benzene) as an expansion in

an analytical basis set.

In the second part of the thesis we discussed transport and its relation to scat-
tering theory. We have shown that in an infinite system the k-space solution of
the Lippmann-Schwinger equation, the integral equation of scattering, includes dis-
tribution functions, as could have been expected by comparison with the use of
plane waves as a basis set. This can cause problems in numerical calculations and
one therefore introduces the T-matrix (transition operator) which is related to the
wave function outside the range of the potential. The T-matrix satisfies a LS like
equation, free of the difficult singularities of the wave function LS equation. In a
2D and 3D system were the electron is confined in all but one direction (such as

a nanosystem connected by two semi-infinite wires) one can use the conventional
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Schrodinger equation to describe the transverse modes (confinement modes) but a
1D LS equation for the propagating part. Thereby one obtains scattering states in
which an electron in a definite mode impinges from one direction and is transmitted
and reflected by the scattering potential into different modes. From these trans-
mission amplitudes one can read off the conductance of the system by help of the
Landauer formula.

We have applied the transport formalism described above to a quasi-one-dimensional
quantum wire. The calculated conductance shows steps as function of energy as
more and more modes become propagating; the conductance of a completely open
channel being equal to the quantum of conductance Gy = 2¢2/h. If the scattering
potential is attractive dips appear in the conductance due to resonant backscatter-
ing by means of quasi-bound states in the scattering potential. All the above is in
complete agreement with what has been seen before in the literature. We therefore
conclude that we have devised a transport formalism capable of describing many
different systems.

Being interested in obtaining the current through molecules we have laid two
important cornerstones in building a theory capable of achieving that goal. We
have shown how to obtain the ground state density of a molecule and how one can
model transport in a nanosystem. The next step would be to try to combine these
two and we have briefly discussed how one could approach it and what the potential
difficulties are. A realistic description of the contacts is of central importance, but
how this is done is something people do not agree upon. The applied voltage also
causes complications such as in the Green’s function and how one should model
screening of the electrostatic potential. The key word is self-consistency but there
are still unanswered questions that remain. In due time people will find answers to

these questions and at that we find it appropriate the end this thesis.



Appendix A

The Obara and Saika Scheme

In the Obara and Saika scheme recursive relations are used to obtain integrals over
Cartesian Gaussian functions. In this appendix this scheme will be discussed. In
Section A.1 we will derive in detail recursive relations for four center integrals, all
other recursive relations used being collected without prove in Section A.2. We have
chosen to do this since the four center overlap integrals are not mentioned in the
original paper [27] but all the other relations are there. In this appendix all energies

are scaled in Rydbergs and all lengths are scaled in Bohr radii.

A.1 Four Center Overlap Integrals

The material in this chapter follows closely the derivations in the original paper of
Obara and Saika [27].

In the grid-free method we need the four center overlap integrals

<gM(CM)g)\(C)\,m)ga(ga,n)gV(Cv» - / dgr gu(c;m T)QA(QW r)ga(gmnv r)gV(Cw I‘). (2'68)

In the following we need to be a little bit more explicit, and therefore we write

unnormalized Cartesian Gaussian functions with origin at A as
9(riCa,a, A) = (v — Ap)™ (y — Ay)™ (2 — A.)* exp[—Ga(r — A)] (A1)

where r = (x,y, z) represents the coordinates of the electron, (, is the orbital expo-
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nent, and a denotes a set of nonnegative integers
a=(ay,ay,a;). (A.2)

The tilde is used to indicate that the function is unnormalized. The normalization

constant of the function is given by

2 3/4
N (o, a) = (?) (4¢,) @ tavta)/2 (9, — 1)11(2a, — 1)!1(2a. — D] 7/2. (A.3)

The sum of a,, a, and a, is related to the total angular momentum quantum number,
the functions with this sum equal to 0,1,2... being refered to as s,p,d. .. respectively.

The sum is refered to as the angular momentum and a as the angular moment index.

It will be useful to introduce the notation
12‘ = (5233, 5@, 5iz>7 7= T, Y,z (A4)

with Kronecker’s delta. In this notation a Gaussian with angular momentum index
1, = (1,0,0) corresponds to p,-type Gaussian etc. Components with angular mo-
mentum d can be represented by 1,+1; (i,j = z, vy, z), where e.g. 1,+1,, corresponds
t0 dyy-

We will also use extensively the notation N;(a) where N; is meant to take the
i-th component of the angular momentum index a. N;(1;) thus plays the same role

as the Kronecker’s delta ¢;;.

With these definitions an unnormalized four center overlap integral can be writ-

ten
(abed) = /d37‘ g(r; Cara, A)g(r; G, b, B)g(r; ¢, ¢, C)g(r; (4, d, D). (A.5)

Note how the angular momentum index a on the left hand side refers to o,, a and
A on the right hand side. To obtain the four center overlap integrals (2.68) from
the unnormalized ones, one simply multiplies with the corresponding normalization

constants.

Differentiating a Cartesian Gaussian with respect to A; will give two terms, one

coming from the derivative of the polynomial and one from the derivative of the
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exponential. Gathering these together one obtains

L 10 Ni(a) . A
g(r’ Ca7a+ 117A) - 2@; aAZg(r7 Caaaa A) + 2Ca g(r7 Caaa 117A)7 (AG)
hence L8 Ni(a)
ila
(a+1;,bed) = 30, 94, (abed) + 2 (a—1;,bcd). (A7)

To be able to perform the differentiation in the above expression we need a more
explicit form for (abcd). Inserting the explicit form of the Cartesian Gaussians

{abed) = / &r (z— Ag)™ (y— Ay)™ - (2= D2)* exp[—Ca(r — A)?] - - - exp[—Ca(r — D)?].
(A.8)
Combining the exponentials into a single exponent by repeated use of the Gaussian

product rule [20]

exp[—Ca(r — A)?* exp[~(y(r — B)’] = exp[~£(A — B)’Jexp[—((r — P)?],  (A.9)

where Gl GA 4GB
aSb a b
= , =(,+ and P=>——"— A.10
=g (Twte Gt G (4-10)
one obtains
(abed) = Kapeals(azbycpdy) Iy (aybycydy) I, (asb,c.d,). (A.11)
The prefactor kq.q is defined by
Kabed = exp[—E(A — B)?| exp[-A(C — D)?| exp[—p(P — Q)?] (A.12)
where
Cch CTI CCC + CdD
— , — , = (. _|_ , = A.13
e+ Ty Gt Q=7 (A.13)
and p A+ GB+6C+ (D
W:C +77Q_Ca +Cb +Cc +Cd . (A14)

C+n Gt G+t G
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The integral I, is defined by
Ix(axbmcxdm) =

/dw (= Ap)®(x — By)* (2w — Cp)* (¢ — Dy)™ exp[—(C +n)(x — Wa)?,
(A.15)

and similarly for 7, and I.. Using the binomial theorem

n

(atb) =Y (Z) bk, (A.16)

k=0

the integral transforms into

ety = 35 52 505 (1) () () (1)

kay=0 kp, =0 ke, =0 kg

% (Wx _ Ax)ax_ka”‘ (Wa: o Bx)bx_kbx (Wg: _ Cx)c’c—kc”‘ (Wa: _ Dz)d””—kdw (A17)

. / da ptos Thoe Thea Thaw expl— (¢ + n)a?].

[e o]

The integrand is odd when k,, + ky, + k., + kq, is odd, and the integral vanishes.
Gradshteyn and Ryzhik [56] provide us with

o0 2n— DI [m
dz 22" exp(—pa? :(7\/j, p>0,n=0,12,...), A.18
/ (=p*) = G o (A

and hence the integral becomes

HE D E )

kag +kpy+key+kq, =even
az—kq by —kp co—ke dz—kq
x (W, —Ay) P (Wy — By)™ "te (W, — C) e (W, — Dy) =

(ka, + ko, + ke, + kg, — D!
" (G ) R TR

I.(azbyc.d,)

(A.19)

Note that we have now actually calculated the four center integral analytically. We
will not use this result directly though, but for obtaining the derivative in Equa-
tion (A.6).
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Differentiation of Equation (A.11) with respect to A; leads to two terms. One

were we differentiate s

1 OKapea _ (CaAz' + G Bi + (Ci + CaD;

_Az ac:Wi_Ai abe A2
2%, OA, Ch )'“d ( o (4.20)

and the other includes the derivative of I; which is obtained by use of Equa-
tion (A.19):

1 8[i o 1 1
26,04, (2<< ) f) Ni(a)li(a; = 1, biesd)

1
1
+ 2+ [Ni(d)I;(a;bici, d; — 1)] .

By combining Equations (A.7), (A.20) and (A.21) we finally obtain our recursive
relation for the four center integrals (i = x,y, 2)

(a+1;,bcd) = (W; — A;) (abed) +
a; (a —1;, de) + b; <a, b-—1,, Cd> + ¢; <ab, c—1;, d> +d; (abc, d-— 1@>
2(C+m)

(A.22)

It is not enough to have the recursive relations, we also need the starting point
which is the four center integrals of only s-type Gaussians. It should be quite clear
from Equations (A.11) and (A.19) that

N
(848bSc5q) = (—) Kabed- (A.23)

A.2 Recursive Relations

The derivations of other recursive relations follow similar lines as the one in Sec-
tion A.1 and are discussed in the original paper [27]. In this section we will only
collect together in a single place the recursive relations we use. The notation is the

same as in last section.
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A.2.1 Electron Repulsion Integral

In the Hartree term we need electron repulsion integrals that are written here in
terms of unnormalized Cartesian Gaussian functions as

<ab\ ’Cd) _ // d37” d37"'/ g(ra Ca7 a, A)g<r7 Cba b7 B)g(rl’ CCa C, C)g<r/7 Cd7 d7 D) ] (A24)

v — |

Introducing an auxiliary electron repulsion integral

(ab| [cd)™ = % /OOO du (pziiﬂ)m (ab|u|cd) (A.25)
where m is nonnegative integer and
<ﬂﬂUR®==/d%ﬁﬁﬁ@AxCM@G@¢LDHﬂ0wW> (A.26)
with
(al 0y |b) = /d37“ 9(r; Cara, A)g(r; G, b, B) exp[—u?(r — 1), (A.27)

one can obtain the recursive relation (i = z,y, 2)

(a+1;,b|cd)™ = (P, — A;) (ab| |cd)"™ + (W; — P;) (ab| |cd) ™V

+ 5eNita) (a1l ed)™) — £ (a = 1,blca) ")

1 m m
#5eNitb) (b= 1ljed)™ = 2 ab = 1o ") (4 g5)
1
+ N;(c) (abl|c —1;,d (m+1)
5C e (bl ~ 1)
1
+ N;(d) (ab||c,d — 1)
5C Vi) bl e.d — 1)
Note that the elements with m = 0 are the true ERI’s.
The ERI over s-type functions is
i~ o~ \(m 1
(53] |5:50) ™ = K (Ca, Gy A, B)K (G, Ga, C, D) F,, (T) (A.29)

VC+n
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where the Boys function is defined by

1
F,.(T) :/ dt t*™ exp(—Tt?), (A.30)
0
T=pP-Q) (A.31)
e / / \/_ 7T5/4 CCI N2
K(,¢,R,R) = 2C+</exp{—C+C/(R—R)} (A.32)

With a little help from Gradstheyn and Ryzhik [56] one can obtain the Boys function

as

1 1 3

where ® (o, v; z) is the confluent hypergeometric function. For large values of 7" we

may approximate the Boys function

1 00
Fm(T):/O dttzmexp(—th)%/O dt t*™ exp(=Tt*) (T > 1). (A.34)

(2m — ! T
Fo(T) =~ S TEmT (T >1). (A.35)

A.2.2 Two Center Overlap Integrals

Hence [20]

Two center overlap integrals are needed to obtain the overlap matrix. Two center

overlap matrix over unnormalized Cartesian Gaussian are written
(@lb) = [ & g(ricua A)glri G b B). (4.3
The recursive relation for these elements is
(a+1,]b) = (P, — A)(a[b) + %Ni(aﬂa by + 2—2Ni(b)<a\b “1) (A37)

and the integral over s functions is given by

N\ 3/
<§a|§b>=(g) expl (A — BY] (A.38)
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A.2.3 Kinetic Energy Integrals
The kinetic energy integral of unnormalized Cartesian Gaussians

@ITIb) = [ Pria A)-5V2)ilr: G b B) (A.39)
is obtained by the recursive relation

(a+1|Tb) = (P, — A) (a| T'|b) + —Ny(a) (a — 1,| T'|b)

2¢
+ %Ni(b) (a| b — 1;) (A.40)
+2¢ (a+1i|b>—i<a—1i|b) .

2Ca

The kinetic energy integral over s functions is

(34| T |36) = €]3 — 26(A — B)*|(3,5). (A.41)

A.2.4 Nuclear Attraction Integrals

The nuclear attraction integral over unnormalizes Cartesian Gaussian

il g 3 a’ ) A‘ g 7 M b7 B
(@] (€ ) = [ oy 22 RN B ) (4.42)
r—C]
is obtained through the recursive relation of auxiliary function
(a+ 1;|Unya(C) )™ = (P, — A;) (a] Upya (C) [b)™
— (P — C3) (a] Unyat (C) [b) ™)
1 (A.43)

+ 5 Ni(2) ((a — 1| Upa(C) [b)™ — (a — 1;| Upya(C) |b><m+1))

+ 2_1CNZ(b) <<a’ Unucl(c) ‘b — 1Z>(m) — (a\ (7nucl(c) ‘b)(m"'l)) ’

where the real nuclear attraction integrals are the ones with m = 0. The auxiliary

integrals are defined by

u2

(@] Uyt (C) |b>(m) — % /000 du (C " u2) (a] 0¢ |b), (A.44)
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where
(al 0¢ [b) = /d?’?‘é(r; Cas 2, A)g(r; G, b, B) exp(—u?(r — C)?). (A.45)
The auxiliary integrals over s functions are
¢ 1/2
<§a| Unud(C) |§b>(m) =2 <;) <§a‘§b>Fm<U>> (A46)

where
U=¢P—C) (A.47)
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Appendix B

The Equality of the Matrix of a
Function and the Function of a

Matrix in a Complete Basis

We will now prove the assertion made in Section 2.5.1:

M[f(n)] = f(M]n]). (2.64)

Assume that we can write the function f as a Taylor series
f(n) =) amn™, (B.1)
then
MIFm)] = MY apn™ = 3 anM™] = 3 an(M))™ = F(M[n)).  (B.2)
The last step is obtained by repeated use of the completeness relation of the basis

S 16)(6] = oc, (B.3)
o]
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such that

(Gul ™ By = D {dulAln) - (bl R |6))
@1 Pm—1

= > MuanMan] - My_y,[n] (B.4)

1(m—1)

= Y Mlnl- Myoyufn] = My fn].

2--(m—1)

Note that in the proof we have frequently had to use the completeness of the
basis. One could fear that if the basis were substantially incomplete the equality of
Equation (2.64) would not be very accurate. Experience through comparisons with
other calculations and experiments will tell if this is accurate enough but as touched

upon in Section 2.5.1 it often turns out to be the case.



Appendix C

Fourier Transform of the Heitler Zeta

Function

In this appendix we calculate the Fourier transform of the Heitler zeta function

¢(k — p). Using the definition given in Equation (3.33) we obtain

) ipT ) ] o —izT
/dpe’pxg(k: —p) = P/dp ]: P iret” = et <P/ dz < — iﬂ') . (C1)

0o z

The principal part

[p:P/ iz & (C.2)

z

is calculated in the complex plane, using the Cauchy integral formula. As usual
whether we close the integration path in the upper or lower halfplane depends on
the sign of z. In the following we assume that = > 0 and close in the lower halfplane,

giving (cf. Figure C.1)

0:/ dz < +/ dzS— — I(R,e), (C.3)
Cr z Ce z

where

—€ —izx R —izx
[p(R,a):/ dz < +/ dzez . (C.4)

R z
In the limit R — oo and ¢ — 0, I,(R,e) — I,. In this limit the integral over Cj is
zero since the exponential falls fast enough to zero. To calculate the path integral
over C. we use a nice little lemma [57] that states that if f(z) has a simple pole

at z = a with residue a_; and k = k(e, ¢) is an arc of the circle |z — o] = ¢ that



84 Fourier Transform of the Heitler Zeta Function

Re z

A

Figure C.1: The contours used when integrating the principal part.

subtends an angle ¢ at the center; then

lim [ dz f(z) =iga_;. (C.5)

e—0t k

Hence
IC = —iﬂ', (CG)

€

the minus coming from the orientation of the path. We therefore obtain

I, = —im. (C.7)
Similar calculations for = < 0 give
I, =im, (C.8)
and therefore
I, = —ime(x) (C.9)
where
-1 x <0,
e(r) = (C.10)
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The Fourier transform of the zeta function follows
/ dp e C(k — p) = —ime® (1 + e(z)) = —2mie™0(z), (C.11)

where () is the Heaviside step function.

The exact same steps give
/dp P (k +p) = —ime ™ (1 — e(x)) = —2mie*0(—x). (C.12)

The case x = 0 has to be treated separately. In this case the principal part is

zero and we obtain

/_OO dp((k+p) = —im. (C.13)

o0
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Appendix D

Transformation of the LS equation to

a Matrix Equation

In numerical calculations the integral equation for the T-matrix is transformed into
a matrix equation. This is done in both the 1D case (Section D.1) and in the 2D /3D
case (Section D.2).

D.1 1D Case

In 1D the T-matrix satisfies the integral equation
T, k) = V() + [ dp VK. p)Golo: E)T (. ) (D.1)

The units of T" and V are energy times length, so if we scale all energies in Ryd-
bergs and lengths in units of Bohr radii we obtain the exact same equation except
everything is scaled. We will in this appendix only work with scaled sizes, but will

not introduce a new notation for it.

In these scaled units the Green’s function is

1

Using the fact [38]

1 P
= —Fq D.
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where P denotes principal value, the Green’s function can be rewritten as

P T

Golp; k) = e oy 00— k) +0(p + k) (D.4)

Introducing this into the LS equation for the T-matrix

T(K. k)= V(K k) + P/Oo ap Y E-P)T (D, k)

e R (D.5)
— 5 (VI )T (k k) + V(K —k) T (=, k)
The integrand in the remaining integral is singular at p = +k. Since
o 1

one can get rid of the singularity of the integrand by a subtraction of a zero |31, 36].

For a general function f we have (assume k > 0)

P/“’d f(p) :P/O‘X’dp f(=p) +P/O°°dp f(p)

e ka_pZ k2_p2 k2_p2 (D 7)
[ f=p) = f(=k) [ flp) = f(k) '
- /0 dp e + /0 dp T2 R

The value of the integrand at the singularity can, by use of 'Hopital’s rule, be seen
to have become f’(£k)/2k. Assuming that f’ is nonsingular at £k, the principal
value can therefore be skipped as already done. In our case f is a combination of
T and V that are smooth functions of energy. Using the above we obtain for the

remaining integral in Equation (D.5)

P /OO dp Ve R _ /OO dp V(K ,p)T(p, k) — V(K k)T (k, k)

o k2 — p? k2 — p? D8
e p V(K ,—p)T(—p, k) — V(K,—k)T(—k, k) '
- ; P K2 p2 :

We perform the integral by putting the upper limit to pyax and dividing the inte-

gration interval into njygervais €qual length subintervals

o) Pmax Nintervals p(1+1)
[0 e
0 0 i=1 p(4)
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where

p(i) = (i = 1) = (i — 1) Ay, (D.10)

Nintervals
Each subinterval integral is approximated by a four point Gaussian quadrature such

that, for a general f

p(i+i) 4
[ dvr =2 Zw]f wy) = Dl (). (D.11)

p(3)

where A
int
W) = — Wi (D.12)
and A 0 1
in 1 —
v = =+ g D (D.13)

x; and w; are the abscissas and weight factors respectively used in the four point
Gaussian scheme were integration limits are from —1 to 1 [58]. We will therefore

write
/0 dp f(p Zwlf ), (D.14)

where Ny = 4nintervals 15 the total number of Gaussian points

Using the above procedure on the integral in Equation (D.8) gives

N,

>  V(K,p)T(p,k) ~ VK, p)T(p1, k) — V(K k)T (k, k)

P/ dp pEm— :Zw; e
> =1 !

S V(K —p)T(=pi, k) — V(K —k)T(—k, k)
" Z k2 —pj

(D.15)

)
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transforming the integral equation for 7" into

VK, —p) ( i k)
/ ’
T(K k) Z e
Ng
V(K
+ Z wl ( 7pl pla k,)T(_k’ k)
k2
=1 (D.16)
Ny /
— K KT (k, k
>t VIE BT (kb
1=1
— 52 (VK R)T(k, k) + V (K, ~k) T (=, k).
We put &’ on a net
_pNg—m-i-l mzl,...,Ng,
m— m=N,+1,... 2N,
g, = QPN g g (D.17)
—k m = 2N, + 1,
k m = 2N, + 2.

\

It is clear that the weight factors for —p; equal w; and the weight factors correspond-
ing to the k,, become

g

U = (D.18)

w;n_Ng m=N,+1,...,2N,.

/ —
Wy, —py1 M =1,..., N,

With these definitions we obtain for &' = k,

2N,
V(ky k)T (ko K
Tk ) = V (ks K) 3 vy e T T )
m=1 m

| 2N
Z k;2 kg V (kn, kany+1)T (kan, 1, k) + V (kn, kon,+2) T (kan, 12, k) )

i

~ o (V (kp, kan,+1)T (kany 41, k) + V (kn, kong2) T (kan, 12, K)) -
(D.19)
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Defining
o m=1,...,2N,
Dy, = Fhm I (D.20)

—3 St i iz m = 2N, + 12N, +2,

the equation for the T-matrix, Equation (D.19), becomes

2Ny +2
Tn,2Ng+2 = Vn,2Ng+2 =+ Z Vanme,2Ng+2- (D21)
m=1
This can be rewritten as
Z anTm,QNg+2 = Vn,2Ng+2 (D22)
where we have defined

This is an easily solved matrix equation. The matrix element Toy, 22n,42 is directly

related to the transmission amplitude

T

T
t = 1 + fE(k — k’) =1- ?T(l{}, l{?) =1- ]{; T2Ng+2,2Ng+2- (D24)

D.2 2D and 3D Case

We now want to transform Equation (3.103) which, if all energies and lengths are

normalized in units of Rydbergs and Bohr radii respectively, can be written

le<k7 Q>ﬂn<Q> kn)
W—@tin

1 [e.e]
T, = — D.2
b o) = Vi ko) 4537 [ dala (0.25)

The energy E is a parameter in this equation through the energy dependence of
k;. The transverse modes are separated into propagating and evanescent modes

depending on the sign of k7. We make this separation explicit by splitting the sum
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over transverse modes into two sums

N,
prop kj T I
Ty (ki) = Vi (K, i) +_ Z/ dadl Vi q) (g, k)

—q*+1in
) (D.26)
ies / d | ‘ ml k Q)En(Q7 kn)
L ot K2 + g2 ;

where Npop is the number of propagating modes, Npodes is the total number of
modes used in the calculation and x7 = 2me;/h* — k% > 0. We have assumed that
the energy is not equal to one of the transverse eigenenergies, hence the Green’s
function for the evanescent modes is non-singular for all ¢, thus allowing n to be

ignored.

Using relation (D.4) with k& = k; we obtain for the sum over propagating modes

N, TOp Nprop
- ml k: Q)ﬂn qa ml k: Q)ﬂn(Q7k3 )
—Z/du 57 | i

- ¢ +Z77

. Nprop

1
- Z Z [le<k> _kl)ﬂn<_kl7 kn) + le(k7 kl)ﬂn“ﬂa kn)] .
=1

(D.27)

The principal part integration is done using the prescription given in Equations (D.7)
and (D.14), leading to

Npro

NPK‘OP Ng

ZZ ml k pg)Tln( pj7kn)
2 _
=1 j=1 ki p]
Nprop Ng
Vi (K, k’ Tin(—ki, kn,
D B B i LN )
=1 j=1 _pJ
Nprop Ny
pzpz Vi (k pa)Tln(PJak )
2
=1 j=1 l —P;
Nprop Ng

Z Z Vi (, kl Tln(klak )

=1 j=1 _p]
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In analogy with the 1D case we reorder the p; such that

—DPN,—j ) =1,...,Ng,
¢ = PNyg—j+1 ] g (D.29)

pijg jINg+1,...,2Ng,

and

why _. =1,...,N,,
vy = Namtt ! (D.30)
Using this in the equation for the principal part (D.28) the sum over the propagating

modes becomes

Nprop 2Ng

Nprop
Vo k Q)Tln(%k ) j1g5] Vi (K, 45) Tin (g5, Kn)
g Z d a =225 P
—q*+in = @ 14

J=1

Nprop 2Ny
Z ( Z k?2 — q _> (le<k> _kl)ﬂn<_kl7 kn) + le(k7 kl)ﬂn(k}l, kn)) .
j J

(D.31)

In the evanescent part of Equation (D.26) there is no singularity and the Gaussian

quadrature (D.14) can be applied directly

Npodes ml k q>ﬂn<q7 kn)
Z d ‘ | 52_’_ 2
1 T4

l Nprop+1

mZOdes / Q>ﬂn<_Q7 kn) + le<k7 q>ﬂ”<q’ k”)

K+ @2

l ]Vprop‘f'1

(D.32)

mZOdes Z iDi Vi (ks =) Tin(—pj» kn) + Vi (k, i) Tin (P, k)
UjP;

2 2
K -
l Nprop+1 j=1 l +p]

Nmodes 2N£7

_ Z Z —Uj|q]‘| le(k?,pj),-rln(pja kn)
o K7+ p? '

I=Nprop+1 j=1

Noting that i + p; = —(kj — p5) we can combine the evanescent part (D.32) and
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Table D.1: The map between the index p and the number of the transverse mode [ and
wavenumber k.

L l k

1 1 a1

2 1 92

2N, 1 G2N,
N, + 1 2 @
2]\/vrnodes Ng Nmodes gaN,
2Nmodes Ng +1 NPTOP - kNPFOP
2]\/vrnodes]\/vg + Nprop 1 _kl
2]Vmodes]\/vg + Nprop +1 1 kl

2N, modes N, g + 2N, prop M, prop kNprop

the propagating part (D.31) to obtain for our 7-matrix LS equation the form

Nmodes 2N¢]

Ton(k, k) = Vi (k, ky) Z Z J|J‘ 1 kl;) ! ‘(J )+

=1

> < Z kQ " Z) (Veui(k, =F0) Tin (=K1, ) + Vit (R, k) T (K, Kon)) -
(D.33)

This is still an equation with two indices but in numerical calculation it is prefer-
able to work with equations with only one index. We therefore define the map
p < (I, k) given in Table D.2. As in the 1D case we define a matrix D

D UJQIZ_JIﬁ M: 1,...,2NmodesNgg (D 34)
Ty L Ng v i .
kl Ej i] k2 — M= 2ernodes]\/vg + 17 SREE) 2Nm0deSNg + 2Npr0p

Note that if there is only one propagating mode and no evanescent modes the matrix
D reduced to the one given in the 1D case (cf. Equation (D.20)) except for a factor
lg;|/2m or k;/2m. This is exactly the factor that enters the LS equation for the 7-
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matrix (D.25), because of the different normalization in the 2D /3D case. Denoting
(m, k) = uo and (n, k,) = v, using the map in Table D.2 and the above definition
of the D matrix, the LS equation (D.33) is transformed into

oo = Viowo + O VaouDuTwe- (D.35)
o

This is the exact same form as obtained in the 1D case in Equation (D.21), and is

solved by the same means.
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