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Abstract

A model is developed for a time dependent transport of a wave packet through a quan-
tum wire with an embedded nanostructure in a perpendicular homogeneous magnetic
field. The model is built on the Lippmann-Schwinger formalism of scattering theory
in coordinate-momentum space as introduced by Gurvitz [1]. Four different nanos-
tructures are studied by using the model: a constriction, a quantum ring, a donor-like
impurity and an acceptor-like impurity. In the results from the simulations we observe
phenomena such as skipping orbits, self-interference, and mode mixing, effects which
have all been seen in the static case [1–5]. In addition we observe time lags and tran-
sition to short or long lived intermediate states, effects that are not directly observable
in the static case.





Acknowledgment

The work and research which is the subject of this thesis was carried out at the Univer-
sity of Iceland and was conducted under the supervision of Prof. Viðar Guðmundsson.
His insight and interested in the field along with his optimism has proven invaluable to
my research. I also deeply appreciate his patience and readyness to answer any ques-
tion laid upon him. I would like to thank my family for their support throughout my
studies at the University of Iceland and last but not the least I thank Berglind for her
love and support.
This research was partly funded by the Research Fund of the Icelandic Science Coun-
cil, the University of Iceland Research Fund, and the Science and Technology Research
Programme for Postgenomic Biomedicine Nanoscience and Nanotechnology.

ii





Contents

1 Introduction 1

2 Fabrication of quantum wires and experimental setup 3
2.1 2DEG structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 q-1DEG structures and their conductance properties . . . . . . . . . . . . . . . 4
2.3 Injecting and measuring a single electron in q-1DEG structures . . . . . . . . . 5

3 Electronic transport in parabolic quantum wires connected to a nanostructure 7
3.1 Wave function in a parabolic quantum wire . . . . . . . . . . . . . . . . . . . 7
3.2 Conductance through a parabolic quantum wire . . . . . . . . . . . . . . . . . 10
3.3 Scattering in a nanostructure connected to quantum wires . . . . . . . . . . . . 12
3.4 Transport of a wave packet through the nanostructure . . . . . . . . . . . . . . 14
3.5 Conductance through a nanostructure connected to a parabolic quantum wire . 16

4 Simulation of scattering in nanostructures 18
4.1 Scattering through a constriction . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Snapshots of the wave packet traveling through a constriction . . . . . 22
4.2 Scattering through a quantum ring . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Snapshots of the wave packet traveling through a quantum ring . . . . . 28
4.3 Scattering through an acceptor-like impurity . . . . . . . . . . . . . . . . . . . 36

4.3.1 Snapshots of the wave packet traveling through an acceptor-like impurity 38
4.4 Scattering through a donor-like impurity . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Snapshots of the wave packet traveling through a donor-like impurity . 44

5 Summary 46

A Numerical calculations of the T-matrix 48

B Calculations of the matrix elements of the embedded potential 53

C Calculations of the initial wavepacket 56

iv





Chapter 1

Introduction

In recent years the ability to construct structures on smaller and smaller scale has im-
proved dramatically. Systems where quantum properties of the electrons are clearly
detectable have become more common through more elaborate fabrication techniques
of semiconductors and the accessibility of 3He -4He refrigerator equipment, which can
produce experimental temperatures in the 10 mK and 1 K range. This has introduced
to us the regime of ballistic mesoscopic physics where elastic scattering length and
phase coherence length of the electron are longer than the dimensions of the sam-
ple. Elaborate nanostructures can be constructed with lithographic methods and ma-
nipulated with equipments such as atomic force microscopes and electron tunneling
microscopes. Some or all dimensions of a sample can be shortened down to Fermi
wavelength of the electrons. This introduces interesting structures such as two dimen-
sional electron gas (2DEG) structures, quantum wires and quantum dots where one,
two or three dimensions of the structures have been reduced to a comparable length to
the Fermi wavelength or shorter.

The focus of this thesis will be on calculations regarding transport of single elec-
tron or a burst of electrons in quasi one dimensional electron gas (q-1DEG) structures
such as quantum wires with some nanostructure embedded in them. This has been
done for the static case [1–5], where the wave function and conductance of a con-
stant stream of plane wave like electrons has been calculated in q-1DEG structures.
But by introducing time to these calculations we will strengthen our understanding
of how electrons are transported through these systems and answer questions such as
of the role of self-interference, mode mixing and skipping orbits in the transport of
the electrons. Many different paths of modeling methods have been taken to get a
time dependent picture of the flow of electrons in q-1DEG structures. These include
adiabatic approximation [6], 1D approximation [7], density functional theory [8] and
non-equilibrium Greens functions [9] to mention a few. But the path taken in this the-
sis will be via scattering theory in momentum-coordinate space, a method suggested
by Gurvitz [1]. The aim is to produce a model that is capable of producing a time
dependent picture of the evolution of a wave packet traveling through various q-1DEG
structures.
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This thesis is divided into 5 chapters along with this introduction chapter. In chap-
ter 2 we will briefly look at how q-1DEG structures are constructed. The chapter ends
with an attempt to consider in a practical way how to inject a single electron or a burst
of electrons into the nanostructures and indirectly measure the evolution of the elec-
tron wave packet. Chapter 3 contains the detailed overview of the theory behind the
simulations. In the former part of the chapter an equation for the evolution of the wave
function in the leads will be developed along with discussion of the conductance in
them. The latter part introduces a nanostructure to the leads and handles the deriva-
tion of the scattered wave function along with an equation for the static conductance
through the nanostructure. Chapter 3 is accompanied by three appendixes at the end
of the thesis. In chapter 4 the setup of the simulations will be described and results
presented. Summary follows in chapter 5.

2



Chapter 2

Fabrication of quantum wires and
experimental setup

This chapter will briefly introduce ways to construct a quantum wire containing some
arbitrary potential geometry. To make such a system the height and width of it have to
be of comparable size or smaller than the Fermi wavelength of the electrons which will
be traveling through it. This will quantize the energy of the electrons in the directions
perpendicular to the wire. We will begin by looking at how we can produce a two
dimensional electron gas (2DEG) with GaAs and AlGaAs. Then we will move onto
ways to transform the 2DEG into a quasi one dimensional electron gas (q-1DEG) and
discuss the transport properties of such a structure. The last section in this chapter
discusses ways to inject and measure single electrons in q-1DEG structures.

2.1 2DEG structures

Figure 2.1: Schematic
picture of the heterostruc-
ture.

A common way to make a 2DEG is to use a heterostructure
made out of GaAs semiconductor and AlxGa1−xAs insulator
(x is the concentration of Al in the compound). Because the
GaAs crystal has a lattice constant of about 5.65 Å and the
AlxGa1−xAs crystal a lattice constant of about 5.66 Å these two
materials are very suitable to grow in layers with each other. A
simple GaAs-AlxGa1−xAs heterostructure is made out of four
different layers, see figure 2.1. These layers are grown in se-
quence atop of each other from a substrate, which is often a
GaAs crystal. A layer of undoped AlGaAs is often included to
reduce defect scattering caused by doping. On top of the het-
erostructure a cap of GaAs prevents the Al atoms to oxidize. To
manufacture the heterostructure requires an accuracy of up to
an atomic monolayer, if crystal defects are to be avoided. This
kind of accuracy can be achieved with molecular beam epitaxy
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Figure 2.2: The conduction band in a GaAs-AlGaAs Heterostructure.

(MBE). GaAs-AlxGa1−xAs has a band gap of about (1.5 +0.7x) eV while GaAs has
a smaller band gap of 1.5 eV. This causes electrons in the conduction bands to flow
from the AlxGa1−xAs layers to the GaAs layer. But the structure is held at a low tem-
perature which makes the GaAs semiconductor insulating. So the conduction bands of
the GaAs in the first layer and the AlxGa1−xAs in the second layer are empty. Thus
the only electrons capable of moving between the layers in this situation are electrons
from the Si atoms which the third layer above the substrate is doped with. But the elec-
trons which come from the Si atoms can not go very far because the Si atoms become
positively charged and attract the electrons back towards them. This produces a profile
of the conduction band which can be seen in figure 2.2. There we can see that a trian-
gular energy well forms at the interface between the GaAs layer and the AlGaAs layer.
In this well we can get an energy gap of roughly 20 meV between subbands. This
energy gap is enough to "freeze" out the motion of the electrons in the z direction for
temperatures lower than ≈ 100K which renders the system dynamically 2D [10, 11].

2.2 q-1DEG structures and their conductance proper-
ties

To further control the geometry of the system electrodes can be put on the cap layer.
Putting negative voltage on these electrodes repels the electrons from the regions below
them while positive voltage attracts them. A schematic arrangement of electrodes
which produces a simple wire geometry containing some structure in the middle of it
can be seen in figure 2.3. The new potential produced by the electrodes introduces new
subbands in the electron gas. But because the electrons can jump between these new
subbands the gas is a quasi one dimensional electron gas (q-1DEG) but not simply one
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Figure 2.3: A schematic picture of how specific geometries can be formed with elec-
trodes on heterostructures.

dimensional. The conductance of such a structure has experimentally been shown to
be quantized with roughly a double conductance quantum, 2e2/h. Analytically this
behavior can be described with the Landauer formula

G = G0Tr[t†t] (2.1)

where G0 = 2e2

h
and t is the transmission matrix [10, 12].

2.3 Injecting and measuring a single electron in q-1DEG
structures

The simulations which this thesis covers all assume a wave packet being injected into
the q-1DEG structures. This could be done in the laboratory by using single electron
tunneling. That process can be achieved by using a double barrier structure which
serves as a quantum dot with discrete energy levels, also known as a single electron
transistor (SET). By connecting an electrode to the structure the energy levels can be
tuned to open or close a path for a single electron to tunnel through it [13, 14]. Mea-
suring the evolution of the wave packet is a trickier business because it can not be
measured directly. But there are indirect ways. One way is scan over the cap layer
of the heterostructure with a tip of an atomic force microscope (AFM) which is bi-
ased with some potential V . The electric field of the tip alters locally the electrostatic
potential below it which affects the conductance through the structure. How much it
alters the conductance depends on how likely it was that the electrons traveled through
the point below the AFM tip in the original electrostatic potential. This can then be
used to roughly build up a picture of the wave function of the electrons [15, 16]. This
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method has only been used for a continuous stream of electrons which corresponds to
the results from the time independent calculations. To get measurements appropriate
for time dependent calculations a scan of the time when the voltage of the AFM tip
is activated could be performed. An another way to measure the wave function is to
use the ability of GaAs to be double refracting which means that the crystal has dif-
ferent diffraction coefficient for different crystal direction. This quality of the crystal
depends upon the electron density in the crystal [17]. So by irradiating the crystal with
unpolarized light and measuring the change between the two differently refracted light
beams from the crystal, one could measure the change of the electron density in the
crystal. Which would enable us to construct a picture of how the wave packet evolves
while traveling through the q-1DEG structures.
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Chapter 3

Electronic transport in parabolic
quantum wires connected to a
nanostructure

In this chapter the theory used in the simulations will be explained. The first section
handles derivation of the wave function in the leads and is followed by a section where
we discuss the conductance through them. In the third section we will turn our at-
tention to deriving the equation for the wave function of the electron scattering from
the embedded nanostructure. The chapter ends with a derivation for the static conduc-
tance through the nanostructure. Calculations of matrix elements of the T-matrix and
the matrix elements of the embedded potential along with the full analytical solution
for the initial wave packet has been put in corresponding appendixes at the end of the
thesis.

3.1 Wave function in a parabolic quantum wire
We will begin by deriving the wave function for a parabolicly shaped quantum wire in
a homogenous magnetic field. It will be assumed that the wire lies along the x-axis of
a 2 dimensional plane and is confined by a harmonic potential in the y direction of that
plane. This corresponds to an one particle Hamiltonian of the form

H =
p2

2m∗ + Vconf =
p2

x

2m∗ +
p2

y

2m∗ +
1

2
m∗Ω2

0y
2. (3.1)

Here m∗ is the effective mass of electrons in GaAs, which we will assume the wire
is made of, and Ω0 is the strength of the confinement potential. As mentioned before
we will also apply a homogenous magnetic field ~B, which will be directed in the
z direction perpendicular to the plane. This magnetic field can be described in the
Landau gauge by a vector potential ~A = −Byx̂ affecting the electron momentum
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operator in the x direction in the following way

px = −i~ ∂

∂x
→ πx = −i~ ∂

∂x
+
e

c
Ax. (3.2)

Inserting this effective momentum operator in the x direction along with the usual
momentum operator in the y direction, py = −i~ ∂

∂y
, into equation (3.1) we get the

following real space representation of the Hamiltonian

H =
1

2m∗

(
−i~ ∂

∂x
+
e

c
Ax

)2

− 1

2m∗

(
−i~ ∂

∂y

)2

+
1

2
m∗Ω0y

2

= − ~2

2m∗

(
∂2

∂x2
+

∂2

∂y2
− 2i

l2
y
∂

∂x
− y2

l4

)
+

1

2
m∗Ω2

0y
2, (3.3)

where l2 = ~c/Be. With this Hamiltonian we can calculate the wave function from
the Schrödinger equation

i~
∂

∂t
Ψ(x, y, t) = HΨ(x, y, t). (3.4)

Because the wire is homogenous in the x direction we would expect to be able to
separate the equations in momentum-coordinate space [1]. We therefore project the
total wave function onto a base of plane waves traveling along the x-axis

Ψ(x, y, t) =

∫
dp√
2π

∫
dω√
2π
ei(px−ωt)Ψ(p, y, ω). (3.5)

This will result in an equation for the Fourier components of the wave function

~ωΨ(p, y, ω) =

{
− ~2

2m∗

(
−p2 +

∂2

∂y2
+

2

l2
yp− y2

l4

)
+

1

2
m∗Ω2

0y
2

}
Ψ(p, y, ω).

(3.6)
By doing some rewriting we will be able to transform equation (3.6) into{

2m∗ω

~
− p2 +

m∗2Ω2
w

~2

(
a2

wωc

Ωw

p

)2

+
∂2

∂y2
− m∗2Ω2

w

~2

[
y − y0(p)

]2
︸ ︷︷ ︸

Hy

}
Ψ(p, y, ω) = 0,

(3.7)
where ω2

c = ~2/m∗2l2, Ω2
w = Ω2

0 + ω2
c , a2

w = ~/m∗Ωw and y0(p) = (a2
wωc/Ωw)p.

Here aw is an effective magnetic length which takes the role of the radius of the clas-
sical circular motion of a particle in constant magnetic field. This will be used as a
length scale in the numerical calculations. By examining equation (3.7) we see that
the perpendicular part is a shifted harmonic oscillator Hamiltonian

HyΦn(y − y0(p)) =
2m∗En

~2
Φn(y − y0(p)), (3.8)
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where Φn(y−y0(p)) are the eigenfunctions of the harmonic oscillator Hamiltonian and
En = ~Ωw

(
n+ 1

2

)
are the eigenvalues. The variables y0(p) and Ωw have their origin

in the Lorentz force. Effectively the Lorentz force offsets the parabolic potential by
y0(p) on the y-axis for each plane wave component and changes the strength of the
potential from Ω0 to Ωw. It is clear that the Fourier components of the wave function
Ψ(x, y, t) are best expanded over a base of shifted harmonic oscillator functions of the
form Φn(y − y0(p)){

2m∗ω

~
− p2 +

m∗2Ω2
w

~2

(
a2

wωc

Ωw

p

)2

+ En

}
ϕ0

n(p, ω)Φn(y − y0(p)) = 0. (3.9)

Now by doing some rewriting again and taking the inner product with Φ∗
n′(y − y0(p)),∫ ∞

−∞
dyΦ∗

n′(y − y0(p))Φn(y − y0(p)) = δn′n, (3.10)

an equation for a free particle traveling along the x-axis in subband n emerges{
~ω − En −

a2
w~
2

Ω2
0

Ωw

p2

}
ϕ0

n(p, w) = 0. (3.11)

An explicit momentum-energy relation can be read from equation (3.11) by multiply-
ing 2Ωw/~Ω2

0 through the equation,{
(kn(ω)aw)2 − (paw)2

}
ϕ0

n(p, w) = 0, (3.12)

or

kn(ω) = ±

√
2Ωw

a2
w~Ω2

0

(~ω − En). (3.13)

The solution to equation (3.11) is therefore a planewave type wave function traveling
either way along the wire with an undetermined function 2πgn(p) that represents the
initial condition

ϕ0
n(p, ω) = 2πgn(p)δ

[
ω −

(
En

~
+
a2

w

2

Ω2
0

Ωw

p2

)]
. (3.14)

By inserting (3.14) into (3.5) and remembering that we expandend Ψ(p, y, ω) in a bases
of shifted harmonic oscillator wave functions, we get a general solution for the wave
function traveling through the wire

Ψ(x, y, t) =
∑

n

∫ ∞

−∞
dpgn(p)e

i

„
px−

„
a2

w
2

Ω2
0

Ωw
p2+En

~

«
t

«
Φn(y − y0(p)). (3.15)

To calculate the integral in equation (3.15) we will need to decide what to choose as an
initial condition gn(p). In appendix C the integral is calculated for a Gaussian shaped
wave function as an initial condition.
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3.2 Conductance through a parabolic quantum wire
By examining the momentum-energy relation in (3.13) we can draw a picture of the
subbands. In figure 3.1 the four lowest subbands have been plotted. There we see that
for an electron to get into the lowest subband, and therefore into the wire, it has to have
at least an energy of 0.5 ~Ωw. Each subsequent band above the lowest requires an extra
n~Ωw energy quantum, where n ∈ N+. If we subtract in each band the energy quantum
required to get into the band the momentum-energy relation has the same form as for
a free particle. Now because only two electrons with forward momentum can occupy
each subband at a given point in the wire, one with spin up and the other with spin
down, the conductance comes in steps. The size of these steps are G0 = 2e2/h, were
e2/h is the conductance quantum. With this analysis we make a conductance plot for
a parabolic quantum wire which can be seen in figure 3.2.
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Figure 3.1: The four lowest subbands plotted for a parabolic quantum wire. The
momentum is scaled in the inverse effective magnetic lengths a−1

w and the energy in
Ew = ~Ωw.

Figure 3.2: Conductance plot for a parabolic quantum wire. The energy is scaled in
Ew = ~Ωw and the conductance in the double conductance quantum G0 = 2e2/h.
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3.3 Scattering in a nanostructure connected to quan-
tum wires

We will use the model for the parabolic quantum wire which we developed in section
3.1 as leads that connect to a nanostructure. This configuration is divided into three
regions; one scattering region containing the nanostructure and two leads, one on each
side, see figure 3.3.

Figure 3.3: The wire is divided into three regions. One scattering region, which repre-
sents the nanostructure, and two leads.

In the scattering region the nanostructure will be represented by a scattering po-
tential Vsc which will be added to the parabolic wire Hamiltonian in equation (3.1) to
make up the total Hamiltonian for the system

H =
~π2

2m∗ +
1

2
m∗Ω0y

2 + Vsc(x, y). (3.16)

The leads are the asymptotic limits of the scattering potential and there the total Hamil-
tonian can be replaced by the parabolic wire Hamiltonian. The Hamiltonian in equa-
tion (3.16) will be treated in the same way as the one in equation (3.1). This will give
us a similar equation as equation (3.12) but with a projection of the scattering potential
added on the right side,{

(kn(ω)aw)2 − (qaw)2
}
ϕn(q, ω) =

∑
n′

∫
dpaw√

2π
Unn′(q, p)ϕn′(q, y) (3.17)

where,

Unn′(q, p) =
2Ωw

aw~Ω2
0

∫
dyΦ∗

n(y − y0(p))V (p− q, y)Φn′(y − y0(q)), (3.18)

and V (p − q, y) is the Fourier transform of Vsc(x, y). Here we should note that the
shifted eigenfunctions of the harmonic oscillator are only orthogonal if they are equally
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shifted. At this point it is convenient to introduce the Greens function of the parabolic
wire which is defined as{

(kn(ω)aw)2 − (qaw)2
}
Gn(q, ω) = 1 (3.19)

or
Gn(q, ω) =

1

(kn(ω)aw)2 − (qaw)2
. (3.20)

We can see from equation (3.12) that the Green function fullfills the relation,{
(knaw)2(ω)− (qaw)2

}
ϕ0

n(q, ω) = G−1
n (q, ω)ϕ0

n(q, ω) = 0. (3.21)

By using this Green function the solution to equation (3.17) can be written as

ϕn(q, ω) = ϕ0
n(q, ω) +Gn(q, ω)

∑
n′

∫
dpaw√

2π
Unn′(q, p)ϕn′(p, ω). (3.22)

Equation (3.22) is a set of coupled integral equations called the Lippmann-Schwinger
equations [18]. We will solve it by symbolically iterating it to all orders and define a
new quantity which will only depend on the system but not on the wave function. This
can be carried out as

ϕ = ϕ0 +GUϕ = ϕ0 +GUϕ0 +GUGUϕ0 + . . . = (1 +GT )ϕ0, (3.23)

where T = U+UGT is an integral equation for the new quantity called the "T -matrix".
This iteration can be thought of as representing all possible repetitions of scattering.
That is to say the first term represents the incoming wave going through unscattered,
the second term represents one scattering event, the third term two and etc. We solve
the exact equation for the T -matrix in the momentum space

Tnn′(q, p, ω) = Unn′(q, p) +
∑
m

∫
dkaw√

2π
Unm(q, k)Gm(k, ω)Tmn′(k, p, ω). (3.24)

The matrix elements in the T -matrix represent the weight of a scattering for energy ~ω
from a momentum p in energy band n′ to a momentum q in energy band n. How we
calculate the T -matrix numerically is shown in Appendix A. In those calculations all
orders of scattering are included which allows us to use scattering regions with com-
plex geometry and structure. With the T -matrix we see that the solution to equation
(3.22) is

ϕn(q, ω) = ϕ0
n(q, ω) +Gn(q, ω)

∑
n′

∫
dpaw√

2π
Tnn′(q, p, ω)ϕ0

n′(p, ω), (3.25)
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which will give us the total wave function in coordinate space

Ψ(x, y, t) =

∫
dq√
2π

∫
dω√
2π
ei(qx−ωt)Ψ(q, y, ω)

=

∫
dq√
2π

∫
dω√
2π
ei(qx−ωt)

∑
n

ϕn(q, ω)Φn(y − y0(q))

=

∫
dq√
2π

∫
dω√
2π
ei(qx−ωt)

∑
n

×

(
ϕ0

n(q, ω) +Gn(q, ω)
∑
n′

∫
dpaw√

2π
Tnn′(q, p, ω)ϕ0

n′(p, ω)

)
Φn(y − y0(q)).

= Ψ0(x, y, t) + Ψsc(x, y, t) (3.26)

Here we see that the total wave function after the incoming wave function enters the
scattering region consists of the original incoming wave function plus a new scattered
wave function Ψsc(x, y, t) emanating from the scattering center.

3.4 Transport of a wave packet through the nanostruc-
ture

Figure 3.4: Wavepacket
with a gaussian shape in
the x direction.

We want to see how an electron or a short burst of electrons
will travel through the nanostructure. To represent it we will
use a gaussian shaped wave packet traveling in one energy band
from the left lead. In equations (3.15) and (3.14) we have the
formulas for the wave packet in the leads before it enters the
scattering region. In order to get the Gaussian shape in the x
direction as an initial condition we choose a Gaussian weight
curve over the momentum

gn(p) = δnme
−λ(p−p0)2 , (3.27)

where λ is positive and controls the width of the wave packet
in the x direction and p0 is the momentum which the packet is
centered around. With this initial condition we can calculate

equation (3.15) directly, these calculations are shown in Appendix C. But for now we
are more interested in equation (3.14). By using the property of the delta function [19]

δ[f(x)] =
∑

j

δ(x− xj)

f ′(xj)
(3.28)

where f(xj) = 0, we can represent equation (3.14) in two ways. The former represen-
tation is the original frequency representation

ϕ0
n(p, ω) = 2πgn(p)δ

[
ω −

(
En

~
+
a2

w

2

Ω2
0

Ωw

p2

)]
(3.29)
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while the latter representation is a momentum representation

ϕ0
n(p, ω) = 2πgn(p)

Ωw

Ω2
0|kn(ω)aw|

δ[paw − kn(ω)aw]. (3.30)

In equation (3.30) we construct the Gaussian weight function in such a way that the
negative momentum contributions can be neglected. By inserting equation (3.29) into
the former term in equation (3.26) we get the initial wave packet. But when we insert
equation (3.30) into the latter term in equation (3.26) we get the scattering part of the
wave function

Ψsc(x, y, t) =
∑
n′

∫ ∞

En′
~

dωe−iωt Ωwgn′(kn′(ω))

Ω2
0|kn′(ω)aw|

×
∑

n

∫ ∞

−∞

dqaw√
2π
Gn(q, ω)eiqxTnn′

(
q, kn′(ω), ω

)
Φn(y − y0(q)).

(3.31)

Here the lower limit in the ω integration only goes down to En′/~. Lower limits would
correspond to imaginary momentum which would give evanescent terms in the initial
wave packet, terms which we assume are non existing in the leads. Evanescent terms
are though present in the scattering region through the Green function. By examining
the Greens-function in equation (3.20) we see that is has two poles, q = ±kn(ω). We
can use this fact to rewrite the q integral in equation (3.31) by expanding the integral
into the complex plane and using the following relation

lim
η→0+

1

x± iη
= P

(
1

x

)
∓ iπδ(x), (3.32)

which we get from complex analysis1. This will result in a total wave function of the
form

Ψ(x, y, t) = Ψ0(x, y, t)

+
∑
n′

∫ ∞

En′
~

dω√
2π
e−iωt Ωwgn′(kn′(ω))

Ω2
0|kn′(ω)aw|

×
∑

n

[
P

∫ ∞

−∞
dq
eiqxTnn′

(
q, kn′(ω), ω

)
Φn(y − y0(q))

(kn(ω)aw)2 − (qaw)2

− iπ

2|kn(ω)aw|
eikn(ω)xTnn′

(
kn(ω), kn′(ω), ω

)
Φn(y − y0(kn(ω)))

− iπ

2|kn(ω)aw|
e−ikn(ω)xTnn′

(
− kn(ω), kn′(ω), ω

)
Φn(y − y0(−kn(ω)))

]
.

(3.33)
1A more thorough approach of how to deal with the pole points that the Greens function introduces

can be seen in Appendix A when dealing with calculations of the T-matrix.
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The principal value integral in equation (3.33), which is the first term in the square
brackets, represents scattering of free particle states into states which do not fullfill
the free particle energy momentum relation of the leads, see equation (3.13). How
much the energy momentum relation is violated is controlled by the Green function.
Because these scattered states violate the energy momentum relation of the leads they
are confined to the scattering region. The second and the third term within the square
brackets of equation (3.33) represents on shell scattering which preserves the energy
momentum relation of the leads. These scattered states can travel out of the scattering
region. The states which the second term represents travel to the right while the states
represented by the third term travel to the left. The integrals in equation (3.33) are
calculated numerically with a repeated scheme of four point Gaussian integration.

3.5 Conductance through a nanostructure connected
to a parabolic quantum wire

The conductance can be calculated for the static case which corresponds to a plane
wave impinging on the scattering region. To calculate the conductance through the
scattering region we will have to estimate how much of the incoming wave makes it
through the right lead. Lets assume we are sending a planewave with energy E =
~ω0 from subband m into the scattering region. This will give us the following wave
function in momentum and frequency space

ϕ0
n(p, ω) = 2πδnmδ(km(ω0)− p)δ(ω0 − ω). (3.34)

When ϕ0
n(p, ω), is used in equation (3.26) for the total wave function we get

Ψ(x, y, t) = eikm(ω0)x−iω0tΦm(y − y0(km(ω0)))

+

∫
dq√
2π
eiqx−iω0t

∑
n

Gn(q, ω0)Tnm(q, km(ω0), ω0)Φn(y − y0(q)).

(3.35)

We will now expand Ψ(x, y, t) onto a base of shifted harmonic oscillators and use
equation (3.32) to evaluate the q integral. This gives the coefficient function of the
expansion as

ψn(x, t) = eikm(ω0)x−iω0tδnm + P

∫
dq√
2π
eiqx−iω0tGn(q, ω0)Tnm(q, km(ω0), ω0)

− i

√
π

8

eikn(ω0)x−iω0t

|kn(ω0)aw|
Tnm(kn(ω0), km(ω0), ω0)

− i

√
π

8

e−ikn(ω0)x−iω0t

|kn(ω0)aw|
Tnm(−kn(ω0), km(ω0), ω).

(3.36)
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The conductance depends on how much of the original wave is measured coming
through the right lead. Now because the second term in equation (3.36) can not go
outside the scattering region and the fourth term represents wave traveling to the left,
these term will not contribute to the measured conductance. So the only terms that
contributes are the first and the third terms. The right going part of the coefficient
function is

ψR
n (x, t) = eikn(ω0)x−iω0t

{
δnm −

√
π

8

i

|kn(ω0)aw|
Tnm(kn(ω0), km(ω0), ω0)

}
.

(3.37)
Thus a transmission matrix tnm(ω0) can be defined as

tnm(ω0) = δnm −
√
π

8

i

|kn(ω0)aw|
Tnm(kn(ω0), km(ω0), ω0), (3.38)

which can be interpreted as the probability for a planewave with energy ~ω0 to be
transmitted forward into the right lead from energy band m into energy band n. Using
this transmission matrix we can calculate the conductance for energy ~ω0 by using the
Landauer formula

G(ω0) = G0Tr[t†(ω0)t(ω0)] (3.39)

where G0 = 2e2

~ is the double conductance quantum.
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Chapter 4

Simulation of scattering in
nanostructures

In this chapter we describe the results of the simulations of the scattering of a wave
packet in nanostructures. Four types of potential structures will be studied, a constric-
tion, a quantum ring, an acceptor-like impurity , and a donor-like impurity. We will
study the quantum ring with various magnetic field strengths and the acceptor-like im-
purity with a wave packet from the first and second subbands. To get a picture of how a
wave packet progresses through one of these nanostructures we have to solve equation
(3.33) numerically for that particular nanostructure. The program which does these
calculations has been implemented in Fortran90 with the ω integral programmed for
parallel execution. Dimensions in the system have been scaled so the equations will
suit better for numerical calculations. The scales used in the calculations are shown in
table 4.1. In all the simulations the strength of the parabolic confinement potential is

Length aw

Wave Vector ∼ Momentum a−1
w

Time ~/~Ωw

Frequency ~Ωw/~

Table 4.1: Scales of the dimensions used in the numerical calculations.

fixed to ~Ω0 = 1 meV. This describes a broad quasi one-dimensional wire as apposed
to one which is fully approximated as one-dimensional [7]. The wave packets are sent
in with a momentum distribution centered around k0 = 2a−1

w . But because the mag-
netic length depends on the strength of the magnetic field this means that this center
of momentum increases with strength of the magnetic field. In table 4.2 we see the
magnetic field strengths used in the simulations, their corresponding magnetic lengths
and initial center of momentum distribution of the wave packets. It should be noted
that all the snapshots of the wave packets presented in this chapter has had their x-axis
compressed and that their y-axis go from top to bottom.
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B[T ] aw[nm] k0 = 2a−1
w [nm−1]

0.2 32.8 0.061
0.3 31.8 0.063
0.5 29.3 0.068
2.0 17.8 0.11

Table 4.2: The corresponding effective magnetic lengths and initial centers of the mo-
mentum distribution of the wave packets for each of the magnetic fields used in the
simulations.

4.1 Scattering through a constriction
We begin by using a constriction as our nanostructure, see figure (4.1). It is a simple
structure and convenient for testing our model. To describe this constriction we will
use the scattering potential

Vconstriction(x, y) = V e−βx(x−x)2−βyy2

, (4.1)

where V = 2 meV, βx = 2 ·10−5 nm−2, x = 10aw = 318 nm, and βy = 2 ·10−6 nm−2.
A magnetic field B = 0.3 T will be applied to the system and the four lowest energy
bands are included in the calculations. In figure 4.2 we can see the conductance of the

Figure 4.1: a) Contour plot of the constriction potential in the wire. b) 3D plot of the
same potential in the wire.

system plotted as a function of energy. As a reference the weight function of the plane
waves which are used to construct the initial wave packet is plotted as a function of
energy. The simulation can be seen in figures 4.4 and 4.5 in section 4.1.1, where the
former figure is a top view of the wave packet and the latter is a 3D view of the same
wave packet. There we see the wave packet colliding onto the constriction and splitting
into two wave packets as expected, one reflected and one transmitted. We also note that
the center of the rightgoing incoming and transmitted packets are shifted to positive
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Figure 4.2: Conductance through the the leads and the scattering region containing the
constriction as a function of energy for B = 0.3 T. As a reference the weight function
of energy in the initial wave packet is also included (seen in green).

y-values, but the center of the leftgoing reflected packet is shifted to negative y-values
due to the Lorentz force. Since a wave packet contains contribution with different
momenta the Lorentz force also distorts the shape of a wave packet. But the transmitted
wave packet seems to ripple and have two or more peaks. This could be explained by
looking at the conductance graph in figure 4.2. There we see that the initial wave
packet is mainly constructed out of energies which contain three conductance tops at
2.3 Ew, 3.3 Ew, and 4.3 Ew. Because the outcoming wave packets seems to mostly
scatter back into the first subband of the leads the energy difference of these peaks
in the conductance would result in higher kinetic energy of the more energetic peaks.
These conductance peaks thus should show themselves in the transmitted wave packet
as tops moving at different speeds, as seems to be the case in the simulations, see figure
4.3.
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Figure 4.3: A snapshot of the wave packet shown at 28.7 ps with the peaks pointed
out.
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4.1.1 Snapshots of the wave packet traveling through a constric-
tion

Figure 4.4: Top view of the wave packet traveling through a constriction at a) 0 ps, b)
1.24 ps, c) 3.12 ps, d) 4.36 ps, e) 9.99 ps, and f) 16.8 ps in B = 0.3 T magnetic field.
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Figure 4.5: 3D view of the wave packet traveling through a constriction at a) 0 ps, b)
1.24 ps, c) 3.12 ps, d) 4.36 ps, e) 9.99 ps, and f) 16.8 ps in B = 0.3 T magnetic field.
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4.2 Scattering through a quantum ring
Next we will turn our attention to a more complex structure. We will pick a nanostruc-
ture which looks like a circular trench with a peak in the middle, see figure 4.6. This
will be our quantum ring. The potential of the ring is described by the equation

Vring(x, y) = V1e
−β1((x−x)2+y2) + V2e

−β2((x−x)2+y2) (4.2)

where V1 = −12 meV, V2 = 18 meV, β1 = 6 · 10−5 nm2, β2 = 6 · 10−4 nm2, and
x = 20aw. The evolution of wave packets in the first subband of the leads which
are injected into the nanostructure will be examined for three magnetic field strengths
B = 0.2 T, B = 0.5 T, and B = 2 T. Also a wave packet in the second subband of the
leads was injected into the nanostructure at B = 0.2 T. The lowest eight energy bands
were included for all these calculations. Graphs of the conductance as function of

Figure 4.6: a) Contour plot of the quantum ring in the wire. b) 3D plot of the potential
in the wire.

energy for each case can be seen in figure 4.8 and snapshots of the wave packets as they
evolve through the quantum ring are shown in section 4.2.1. Lets begin by looking at
the first two cases, that is to say electrons in states described by wave packets injected
from the first energy subband into the quantum ring at magnetic strengths of B = 0.2
T and B = 0.5 T. The evolutions of these wave packets can be seen in figures 4.9 and
4.10 in section 4.2.1 for the case whenB = 0.2 T, and figures 4.11 and 4.12 in the same
section for the case when B = 0.5 T. There we see that the wave packets for each case
evolve in a very similar way. Both are momentarily trapped in the quantum ring and are
then scattered from it, leaving behind a weak circular quasi bound state which slowly
leaks out into the left and the right leads [4]. An interesting thing to notice is that the
reflected and transmitted wave packets perform a "zig zag" motion as they travel along
the leads. This is shown better in figure 4.7 which is a snap shot from the case when
the magnetic field strength is B = 0.5 T. This resembles the classical trajectories of
electrons hopping along the wall of the leads in magnetic field or skipping orbits [20].
The only notable differences between these two cases are that we see the effects of the
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Figure 4.7: A snapshot of a wave packet evolving through a quantum ring with a
B = 0.5 T magnetic field applied to it. The red arrows highlight the zig zag motion of
the transmitted and the reflected packet.

Lorentz force more clearly for the B = 0.5 T case, as was expected, and the B = 0.2
T case seems to have a very little reflected wave packet. In theB = 0.5 T case we have
a reflected wave packet of notable size which seems to move in the same zig zag way
as the transmitted packet. But it is though considerably smaller than the transmitted
packet. The difference in size of the reflected packets between the two cases could
be explained by where they hit the quantum ring. The Lorentz force causes the wave
packet to be further up the parabolic confinement potential for the case when B = 0.5
T than B = 0.2 T. This causes the wave packet in the B = 0.5 T case to hit the ring
potential where it has more curvature along the y-axis than for the B = 0.2 T case,
see figure 4.6, resulting that the wave packet in the 0.5 T case takes more circular path
than for the B = 0.2 T case.
Lets next turn our attention to the case when the magnetic strength has been turned up
to B = 2.0 T. Snapshots of the evolution of a wave packet in that case can be seen
in figures 4.13 and 4.14 in section 4.2.1. There we see a very different scenario than
from what we saw in the cases when B = 0.2 T and B = 0.5 T. The wave packet
now gets more skewed than for lower magnetic field strengths as the Lorentz force
pulls the faster high energy components higher up the parabolic potential. As the wave
packet hits the quantum ring only a part of the packet seems to be affected by the
quantum ring and we observe no visable backscattering. The lack of backscattering
can be contributed to the large Lorentz force which makes it difficult for the wave
packet to make a "U-turn" to the left. But the reason for why only a part of the wave
packet is affected by the quantum ring depends on where the packet hits the ring. The
lower energy components of the packet hit the ring where there is little or no circular
curvature. So as the packet can not backscatter it has limited options other than to go
straight ahead. But the more energetic components of the wave packet are higher up in
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the parabolic potential and are confronted by more circular curvature which they can
follow. In this case the Lorentz force also helps to direct these components into the
curved path they take.
As our last case using the quantum ring we take a wave packet which is injected into
the ring from the second subband of the leads and where the magnetic field strength is
set to B = 0.2 T. In figures 4.15 and 4.16 in section 4.2.1 we see that the evolution of
this wave packet is very similar to the case where a packet was injected from the first
subband of the leads for B = 0.2 T. The packet is again trapped in the ring and leaves
behind a circular semibound state as before. The packet seems though to spend more
time at the quantum ring, which could be expected as this packet has lower kinetic
energy than the one which was injected from the first energy level. The reflected and
transmitted wave packet also shows a zig zag like movement as they scatter into the
leads. It is interesting to see that the reflected and the transmitted packet seems to
remain in the second energy level after scattering.
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Figure 4.8: Conductance through the leads and the scattering region containing the
quantum ring as a function of energy for a) B = 0.2 T, b) B = 0.5 T, c) B = 2.0
T, and d) B = 0.2 T. As a reference the weight function of energy in the initial wave
packets is also included (seen in green). The weight function in a), b) and c) are for
wave packet injected into the nanostructure from the first subband of the leads while
the weight packet in d) is for a wave packet injected from the second subband. As the
wave packet in d) is in the second subband energies in the initial wave packet do not
go lower than 1.5 Ew.
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4.2.1 Snapshots of the wave packet traveling through a quantum
ring

Figure 4.9: 3D view of a wave packet traveling through a quantum ring at a) 0 ps, b)
4.32 ps, c) 6.89 ps, d) 13.8 ps, e) 20.7 ps, f) 31.1 ps in B = 0.2 T magnetic field.
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Figure 4.10: Top view of a wave packet traveling through a quantum ring at a) 0 ps, b)
4.32 ps, c) 6.89 ps, d) 13.8 ps, e) 20.7 ps, f) 31.1 ps in B = 0.2 T magnetic field.
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Figure 4.11: 3D view of a wave packet traveling through a quantum ring at a) 0 ps, b)
6.37 ps, c) 9.26 ps, d) 18.6 ps, e) 27.8 ps, f) 41.8 ps in B = 0.5 T magnetic field.
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Figure 4.12: Top view of a wave packet traveling through a quantum ring at a) 0 ps, b)
6.37 ps, c) 9.26 ps, d) 18.6 ps, e) 27.8 ps, f) 41.8 ps in B = 0.5 T magnetic field.
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Figure 4.13: 3D view of a wave packet traveling through a quantum ring at a) 0 ps, b)
1.39 ps, c) 2.07 ps, d) 2.87 ps, e) 4.15 ps f) 5.54 ps in B = 2.0 T magnetic field.
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Figure 4.14: Top view of a wave packet traveling through a quantum ring at a) 0 ps, b)
1.39 ps, c) 2.07 ps, d) 2.87 ps, e) 4.15 ps f) 5.54 ps in B = 2.0 T magnetic field.

33



Figure 4.15: 3D view of a wave packet traveling through a quantum ring at a) 0 ps, b)
4.32 ps, c) 6.89 ps, d) 15.6 ps, e) 28.6 ps, f) 32.0 ps in B = 0.2 T magnetic field and
injected from the second subband of the leads.
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Figure 4.16: Top view of a wave packet traveling through a quantum ring at a) 0 ps, b)
4.32 ps, c) 6.89 ps, d) 15.6 ps, e) 28.6 ps, f) 32.0 ps in B = 0.2 T magnetic field and
injected from the second subband of the leads.
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4.3 Scattering through an acceptor-like impurity
Now we will look at a potential in the wire representing an acceptor-like impurity, see
figure 4.17, and apply a magnetic strength of B = 0.5 T to the system. The potential
is described by the equation

Vacceptor(x, y) = V e−β((x−x)2+y2), (4.3)

where V = 8 meV, β = 1.0 · 10−2 nm−2, and x = 20aw = 586 nm. The six lowest
energy bands where included for the simulations for this system. We will look at two

Figure 4.17: a) Contour plot of an acceptor-like impurity potential in the wire. b) 3D
plot of the same potential in the wire.

cases for this system. One where we introduce a wave packet from the first subband of
the leads, see figures 4.20 and 4.21 in section 4.3.1, and another where we introduce a
wave packet from the second subband of the leads, see figures 4.22 and 4.23 in section
4.3.1. The static conductance through the leads and the scattering region as a function
of energy along with weight function of energy in the initial wave packet can be seen
in figure 4.19 for both cases. Lets begin by considering the case where the initial wave
packet is in the first subband. What we see in figures 4.22 and 4.23 is the wave packet
colliding into the impurity. The front of the wave packet, which is the most energetic
part of it, seems to go through without much interaction with the potential. But the rest
of the wave packet seems to be more effected by the potential and shows the zig zag
motion as seen for other potentials. This results in that the transmitted packet seems
to have a wiggling tale. A small reflected packet is also visable and displays a zig zag
motion and lags in time as is seen for other potentials. We can notice a faint mode
mixing at the potential as a part of the wave packet jumps from the first subband into
an evanescent state in the second subband [21]. But no quasi bound state seems to
have resulted after the scattering process as has been shown for higher magnetic field
strengths in the static case [22, 23].
The case where the wave packet is initially in the second subband of the leads gives
similar results as for the former case. It remains in the same subband after scattering
as it was before scattering, which is the same result as we got for the quantum ring.
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The main difference is that the packet shows a stronger mode mixing at the potential
where a part of the packet jumps from the second subband to the third, see figure 4.18.
An another thing to notice is that here are also no visible quasi bound states left at the
potential as the reflected and transmitted packets leave it.

Figure 4.18: A top view of the wave packet at 13.7 ps. Here the three tops of the third
subband evanescent state are pointed out.

Figure 4.19: The static conductance through the leads and the acceptor-like impurity,
a) with energy weight function for an initial wave packet from the first subband of the
leads (seen in green), b) with energy weight function for an initial wave packet from
the second subband of the leads (seen in green).
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4.3.1 Snapshots of the wave packet traveling through an acceptor-
like impurity

Figure 4.20: 3D view of a wave packet traveling through an acceptor-like impurity at
a) 0 ps, b) 13.0 ps, c) 21.7 ps, d) 23.9 ps, e) 32.5 ps, f) 43.4 ps in B = 0.5 T magnetic
field.
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Figure 4.21: Top view of a wave packet traveling through an acceptor-like impurity at
a) 0 ps, b) 13.0 ps, c) 21.7 ps, d) 23.9 ps, e) 32.5 ps, f) 43.4 ps in B = 0.5 T magnetic
field.
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Figure 4.22: 3D view of a wave packet, injected from the second subband, traveling
through an acceptor-like impurity at a) 0 ps, b) 10.9 ps, c) 21.7 ps, d) 26.8 ps, e) 32.5
ps, f) 43.4 ps in B = 0.5 T magnetic field.
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Figure 4.23: Top view of a wave packet, injected from the second subband, traveling
through an acceptor-like impurity at a) 0 ps, b) 10.9 ps, c) 21.7 ps, d) 26.8 ps, e) 32.5
ps, f) 43.4 ps in B = 0.5 T magnetic field.
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4.4 Scattering through a donor-like impurity
As our last nanostructure we will pick a narrow potential well representing a donor-like
impurity, see figure 4.27 applied with a magnetic strength of B = 0.5 T. The potential
is described as

Vdonor(x, y) = V e−β((x−x)2+y2) (4.4)

where β = 1.0 · 10−2 nm−2, x = 20aw = 586 nm, and the depth is V = −8 meV.
The six lowest energy bands were included for this simulations as was done for the
acceptor.

Figure 4.24: a) Contour plot of a donor-like potential in the wire. b) 3D plot of the
same potential in the wire.

This potential is really just an inverse of the acceptor we examined in section 4.3.
In figure 4.25 we can see the static conductance graph for the donor and in figures
4.26 and 4.27 in section 4.4.1 we can see snapshots of the wave packet as it travels
through donor. In the snapshots we see that the wave packet evolves in a similar way
as it did for the acceptor. We see a mode mixing as a part of the packet jumps from the
first subband into an evanescent state in a second subband, a transmitted packet with a
wiggling tale, and a small reflected packet. But we can also detect a weak quasi bound
state left behind after the scattered packets leave the scattering area. This is something
we did not see for the acceptor. The magnetic field breaks the parity with respect to
the y direction allowing a transition to the second subband. Without the magnetic field
this transition would be forbidden [3].
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Figure 4.25: Static conductance through the leads and scattering region containing the
donor-like impurity as a function of energy with the weight function of energies in the
initial wave packet (seen in green).
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4.4.1 Snapshots of the wave packet traveling through a donor-like
impurity

Figure 4.26: 3D view of a wave packet, injected from the second subband, traveling
through a donor-like impurity at a) 0 ps, b) 8.72 ps, c) 13.9 ps, d) 19.7 ps, e) 28.4 ps,
f) 34.8 ps in B = 0.5 T magnetic field.
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Figure 4.27: Top view of a wave packet, injected from the second subband, traveling
through a donor-like impurity at a) 0 ps, b) 8.72 ps, c) 13.9 ps, d) 19.7 ps, e) 28.4 ps,
f) 34.8 ps in B = 0.5 T magnetic field.
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Chapter 5

Summary

In this thesis a model of a time dependent evolution of an electron wave packet trav-
eling through a quantum wire with an embedded nanostructure has been presented.
The model is built upon the Lippmann-Schwinger formalism [18] for scattering theory
and is capable of handling any nanostructure which can be represented by a sum of
Gaussian potentials covering a finite area in an infinite parabolic quantum wire. The
model was applied to four different embedded nanostructures: a constriction (which
was used as a basic test for the model), quantum ring, an acceptor-like impurity, and
a donor-like impurity. The system is held in a perpendicular homogeneous magnetic
field. By applying an idea developed by Gurvitz [1] the Lippmann-Schwinger equation
is transformed into momentum-coordinate space where it can be separated in spite of
the magnetic field.
Of these structures the quantum ring was most extensively tested, applying to it three
different magnetic field strengths and injecting wave packets into it from two different
subbands of the leads. The wave packet showed a very regular circular form when
entering the quantum ring for all cases except the case where a high magnetic field
was applied. Also in all cases, except the high magnetic one, the wave packet left
behind a quasi bound state after scattering. The embedded potential representing an
acceptor-like impurity was hit by wave packets from the first and second subband of
the leads. As the wave packet from the first subband entered the scattering region it
was observed that a small part of it jumped from the first subband into a short lived
evanescent state in the second subband. This kind of mode mixing was more obvious
for the wave packet entering from the second subband as a large part of it jumped from
the second subband into an evanescent state in the third subband. The reason for that
the mode mixing is more apparent for the wave packet in the second subband than the
one in the first subband is propably because the wave packet entering from the sec-
ond subband has lower kinetic energy than the one entering from the first subband. It
therefore spends more time in the scattering region and is more affected by the scat-
tering potential. No quasi bound state living for an extended time were observed for
the acceptor-like impurity in the magnetic field used in the simulation. One simulation
was performed for the donor-like impurity and it showed similar results as for the ac-
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ceptor, except that a faint quasi bound state was observed. For all the transmitted and
reflected wave packets that scattered from the nanostructures used in the simulations,
except for the constriction, some kind of a zig zag motion was observed. This zig
zag motion represents the electron jumping on the wall of the leads or skipping orbits.
Also for all the simulations a time lag for different parts of the packets was observed
as the wave packets scattered from the embedded nanostructures. This time lag was
seen to be greater for the reflected wave packets than the transmitted.
With comparison to the static case [3,4,21,22] the results from these simulations indi-
cate that this model gives a realistic picture of the evolution of a wave packet through
quantum wires with embedded nanostructures. It has also sheds light on features not
apparent in the static case, such as time lags. We have thus developed a general model
for describing the passage of electron wave packets through quantum nanostructures
of finite width. Combined with the result from the static conductance calculations,
and the investigations on transient effects in transport [9] the future is now open for
research into signal processing in nanosystems.

47



Appendix A

Numerical calculations of the T-matrix

This section will be devoted to transform the equation for the T-matrix,

Tnn′(q, p, ω) = Unn′(q, p) +
∑
m

∫
dkaw√

2π
Unm(q, k)Gm(k, ω)Tmn′(k, p, ω)︸ ︷︷ ︸

Im

, (A.1)

from a linear integral equation into a linear algebra equation [24] in section 3.3. When we
examine equation (3.20) we notice that for fixed energy the Green function has two poles,
k = ±kn(ω). To calculate the integral Im we have to get rid of these poles [25]. So we expand
our calculations from the real axis onto the complex plane. The path which we will integrate
over on the complex plane will form a semicircle as seen in figure (A.1)

Figure A.1: The integration contour in the complex plane.

Now because Unm(q, k) and Gm(k, ω) go to zero as |k| → ∞ it is safe to assume that
Tmn′(k, p, ω) goes to zero as well when |k| → ∞. This means that we can expand the semi-
circle in figure (A.1) to infinity and make use of the Jordan’s Lemma. So the only term of the
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integral which gives us a contribution is the path of the integral parallel to the real axis

Im =
∮

C

dkaw√
2π

Unm(q, k)Gm(k, ω)Tmn′(k, p, ω)

= lim
ξ→0+

∫ ∞

−∞

dkaw√
2π

Unm(q, k)Tmn′(k, p, ω)
(km(ω)aw)2 − (kaw)2 + iξ

.

(A.2)

With a help from a well known relation in complex analysis,

lim
ξ→0+

1
x± iξ

= P

(
1
x

)
∓ iπδ(x),

along with equation (3.28) in section 3.4, which tells us how to rewrite the delta function, we
can rewrite the integral Im as

Im = P

∫ ∞

−∞

dkaw√
2π

Unm(q, k)Tmn′(k, p, ω)
(km(ω)aw)2 − (kaw)2︸ ︷︷ ︸

IP

−
√
π

8
i

|km(ω)aw|
Unm(q,−km(ω))Tmn′(−km(ω), p, ω)

−
√
π

8
i

|km(ω)aw|
Unm(q, km(ω))Tmn′(km(ω), p, ω). (A.3)

We could evaluate the principal value integral IP in equation (A.3) directly as

IP = ±i
√
π

8
Unm(q, km(ω))Tmn′(km(ω), p, ω)− Unm(q,−km(ω))Tmn′(−km(ω), p, ω))

km(ω)aw

+
√

2πi
∑

Res[Unm(q, k)Tmn′(k, p, ω)]. (A.4)

but as we do not know the residues of the T -matrix beforehand equation (A.4) is of little
practical use to us. We therefore have to evaluate the principal value integral IP numerically.
The first step to achieve that goal is to turn the principal value integral into a regular integral [2].
That is to say, we have to make it continuous over the pole points. By using the fact that

P

∫ ∞

−∞
dx

1
y2 − x2

= P

∫ ∞

−∞
dx

1
2y

(
1

x− y
− 1
x+ y

)
= 0 = 2P

∫ ∞

0
dx

1
y2 − x2

(A.5)

we can rewrite IP as

IP =
∫ ∞

0

dkaw√
2π

Unm(q,−k)Tmn′(−k, p, ω)− Unm(q,−km(ω))Tmn′(−km(ω), p, ω)
(km(ω)aw)2 − (kaw)2

+
∫ ∞

0

dkaw√
2π

Unm(q, k)Tmn′(k, p, ω)− Unm(q, km(ω))Tmn′(km(ω), p, ω)
(km(ω)aw)2 − (kaw)2

. (A.6)

If limk→∞ d/dkUnm(q,±k)Tmn′(±k, p, ω) is finite we can add again to the integral the points
which contained the poles without reintroducing the poles. This can be confirmed by l’Hôpital’s
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rule. To integrate the IP integral numerically we will use a repeated four point Gaussian in-
tegration schema [26]. If g(k) is our integrand we will rewrite and approximate the integral
as ∫ ∞

0

dk√
2π
g(k) ≈

∫ kmax

0

dk√
2π
g(k) =

NG∑
nG=1

∫ ng∆

(ng−1)∆

dk√
2π
g(k)

≈
NG∑

nG=1

∆√
8π

4∑
i=1

vig

(
∆
2

(ti + 2ng − 1)
)

=
NG∑

nG=1

∆√
8π

4∑
i=1

vig(τi(ng)) (A.7)

where τi(ng) = ∆(ti+2ng−1)/2. Here we have put an upper limit on the integral and divided
it into NG parts on the momentum axis, each of size ∆. Each part is then integrated by a four
point Gaussian integration. The Gauss points ti and weights vi are given by table A.1.

i ti vi

1 -0.86113631 0.34785485
2 -0.33998104 0.65214515
3 0.33998104 0.65214515
4 0.86113631 0.34785485

Table A.1: Points and their corresponding weights used in four point Gaussian inte-
gration for scaled integrals.

Now if we also limit the number of energy bands to mmax, we get a numerical version of
equation (A.1), which is

Tnn′(q, p, ω) ≈ Unn′(q, p) +
mmax∑
m=0

×

[
∆aw√

8π

NG∑
nG=1

4∑
i=1

vi
Unm(q,−τi(ng))Tmn′(−τi(ng), p, ω)− Unm(q,−km(ω))Tmn′(−km(ω), p, ω)

(km(ω)aw)2 − (τi(ng)aw)2

+
∆aw√

8π

NG∑
nG=1

4∑
i=1

vi
Unm(q, τi(ng))Tmn′(τi(ng), p, ω)− Unm(q, km(ω))Tmn′(km(ω), p, ω)

(km(ω)aw)2 − (τi(ng)aw)2

−
√
π

8
i

|km(ω)aw|
{Unm(q, km(ω))Tmn′(km(ω), p, ω) + Unm(q,−km(ω))Tmn′(−km(ω), p, ω)}

]
.

(A.8)

To simplify things we trade off the double sum
∑NG

nG=1

∑4
i=1 for a simple sum

∑N
l=1 where

l = 4(ng − 1) + i and N = 2NG. Now lets count τ and v in this new way, that is τi(ng) → τl
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and vi → vl,1 and make a new Gauss net κl that expand over both negative and positive τ ’s,
see table A.2.

l = 1, . . . , N
2

l = N
2

+ 1, . . . , N
κl −τN

2
−l+1 τl−N

2

Table A.2: New integration net based on the four point Gaussian integration schema.

Using this new Gauss net equation (A.8) will give us

Tnn′(q, p, ω) = Unn′(q, p) +
∆aw√

8π

mmax∑
m=1

N∑
l=1

vl
Unm(q, κl)Tmn′(κl, p, ω)
(km(ω)aw)2 − (κlaw)2

− ∆aw√
32π

mmax∑
m=1

N∑
l=1

vl
Unm(q, km(ω))Tmn′(km(ω), p, ω) + Unm(q,−km(ω))Tmn′(−km(ω), p, ω)

(km(ω)aw)2 − (κlaw)2

−
mmax∑
m=1

√
π

8
i

|km(ω)aw|
{Unm(q, km(ω))Tmn′(km(ω), p, ω) + Unm(q,−km(ω))Tmn′(−km(ω), p, ω)}.

(A.9)

Equation (A.9) presents a form for the T -matrix which is convenient for numerical calculations.
But it is still an implicit equation which could be solved with iteration. But we would like to
avoid to constrict ourself to finite iterations and would like calculate a T which is to all orders.
This can be achieved by turning equation (A.9) into a simple linear algebra equation. Lets
begin by once again expanding our Gauss net to a new net kj which includes all energy bands
upp to mmax and add the poles points ±km(ω) in each band. The procedure for this expansion
can be seen in table A.3 where Nbands(m) = (N + 2)m.

j = Nbands(m) + 1, . . . , Nbands(m) +N j = Nbands(m) +N + 1 l = Nbands(m) +N + 2
kj κj−Nbands(m) −km(ω) km(ω)

Table A.3: An expanded integration net containing points in all energy bands, includ-
ing the pole points.

Using this net we can define a vector D(kj) as

D(kj) =

{
∆aw√

8π

vj

(km(ω)aw)2−(kjaw)2
for kj 6= ±km(ω)

− ∆aw√
32π

∑2N
l=1

vj

(km(ω)aw)2−(kjaw)2
−
√

π
8

i
|km(ω)aw| for kj = ±km(ω).

With this D(kj) vector along by replacing the continuous variables p and q by the discreet nets
{kr} = {kj} and {ks} = {kj} we can rewrite equation (A.9) as

T (ks, kr, ω) = U(ks, kr) +
Nbands(mmax)∑

j=1

U (ks, kj)D(kj)T (kj , kr, ω) . (A.10)

1Here all the ng cells have identical list of vl.
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By defining a matrix
F (ks, kj) = δkj ,ks − U (ks, kj)D(kj) (A.11)

and use it to rewrite equation (A.10) we finally get the simple linear algebra equation which
we were aiming at,

mmax(2N+2)∑
j=1

F (q, kj)T (kj , p, ω) = U(q, p). (A.12)

As is obvious from equation (A.12) we can now calculate a solution for the T -matrix that is to
all orders of scattering.
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Appendix B

Calculations of the matrix elements of
the embedded potential

The scattering potentials that are used in the numerical calculations are made of sums of Gaus-
sian potentials written as

V (x, y) =
∑

t

Vte
−βxt(x−xt)2−βyt(y−yt)

2
. (B.1)

in real space. Here Vt is the strength of the potential number t, xt and yt give the position of
the top of the potential while βxt and βyt control how wide the Gaussian potential is in the x
and y directions. In our calculations in section 3.3 we first projected the scattering potential
onto a plane wave space and then onto a space of shifted harmonic wavefunctions. Lets do that
for the Gaussian potentials.

Vnn′(q, p) = 〈n|V |n′〉 =
∑

t

Vt

∫ ∞

−∞

dx√
2π

∫ ∞

−∞
dye−ipxΦ∗

n(y − y0(p))V (x, y)Φn′(y − y0(q))eiqx

=
∑

t

Vt

∫ ∞

−∞

dx√
2π
ei(q−p)x−βxt(x−xt)2︸ ︷︷ ︸

Vx

∫ ∞

−∞
dyΦ∗

n(y − y0(p))e−βyt(y−yt)
2
Φn′(y − y0(q))︸ ︷︷ ︸

Vy

,

(B.2)

where Φn(y − y0(q)) is the shifted harmonic wavefunction written as [27]

Φn(y − y0(q)) =
e
− 1

2

“
y−y0(q)

aw

”2√
2nπ1/2n!aw

Hn

(
y − y0(q)

aw

)
. (B.3)

As can be seen from equation (B.2) the x and y integrals can be calculated separately. We
begin by calculating the x-integral which is the simpler of the two [28]:

Vx =
∫ ∞

−∞

dx√
2π
e−βxt(x−xt)2−i(p−q)x

x′=x−xt︷︸︸︷
=

e−i(p−q)xt

√
2π

∫ ∞

−∞
dx′e−βxtx′2−i(q−p)x′

=
1√
2βxt

e
− (p−q)2

4βxt =
aw√

2βxta2
w

e
−i(paw−qaw)

xt
aw

− (paw−qaw)2

4βxta2
w . (B.4)
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Next we will calculate the y integral. By inserting equation (B.3) into equation (B.2) we get

Vy =
1√

2n+n′πn!n′!

∫ ∞

−∞

dy

aw
e
− 1

2

“
y−y0(p)

aw

”2
− 1

2

“
y−y0(q)

aw

”2
−βyta2

w
(y−yt)

2

a2
w

× Hn

(
y − y0(p)

aw

)
Hn′

(
y − y0(q)

aw

)
(B.5)

Now by rewriting the exponential in equation (B.5) as

−1
2

(
y − y0(p)

aw

)2

− 1
2

(
y − y0(q)

aw

)2

− βyta
2
w

(
y − yt

aw

)2

= −(1 + βyta
2
w)

(
y

aw
−

y0(p)
aw

+ y0(q)
aw

+ 2βyta
2
w

yt
aw

2(1 + βyta2
w)

)2

+

(
y2
0(p)
a2

w
+ y2

0(q)
a2

w
+ 2βyta

2
w

y2
0

a2
w

)2

4(1 + βyta2
w)

− 1
2

(
y2
0(p)
a2

w

+
y2
0(q)
a2

w

+ 2βyta
2
w

y2
0

a2
w

)
(B.6)

and making the following change of variables y/aw = S/(
√

1 + βyta2
w) our Vy integral be-

comes

Vy =
exp

(
1

4(1+βyta2
w)

(
y0(p)
aw

+ y0(q)
aw

+ 2βyta
2
w

yt
aw

)2
− 1

2

(
y2
0(p)
a2

w
+ y2

0(q)
a2

w
+ 2βyta

2
w

y2
0

a2
w

))
√

2n+n′πn!n′!(1 + βyta2
w)

×
∫ ∞

−∞
dS exp

−(S − y0(p)
aw

+ y0(q)
aw

+ 2βyta
2
w

yt
aw

2
√

1 + βyta2
w

)2


× Hn

(
S√

1 + βyta2
w

− y0(p)
aw

)
Hn′

(
S√

1 + βyta2
w

− y0(q)
aw

)
. (B.7)

We now use the following relation [28],

2
n
2Hn(x+ y) =

n∑
i=0

(
n

i

)
Hn−i

(
x
√

2
)
Hi

(
y
√

2
)
. (B.8)

to rewrite the Hermite polynomials in our integral,

Vy =
exp

(
1

4(1+βyta2
w)

(
y0(p)
aw

+ y0(q)
aw

+ 2βyta
2
w

yt
aw

)2
− 1

2

(
y2
0(p)
a2

w
+ y2

0(q)
a2

w
+ 2βyta

2
w

y2
0

a2
w

))
√

2n+n′πn!n′!(1 + βyta2
w)

×
n∑

i=0

(
n

i

) n′∑
j=0

(
n′

j

)
Hi

(
−
√

2
y0(p)
aw

)
Hj

(
−
√

2
y0(q)
aw

)

×
∫ ∞

−∞
dS exp

−
S −

(
y0(p)
aw

+ y0(q)
aw

+ βyta
2
w

yt
aw

)2

2
√

1 + βyta2
w


2

× Hn−i

(√
2

1 + βyta2
w

S

)
Hn′−j

(√
2

1 + βyta2
w

S

)
(B.9)
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The integral in equation (B.9) is known and has the following solution [28]

∫ ∞

−∞
dxe−(x−y)2Hm(αx)Hn(αx) = π1/2

min(m,n)∑
k=0

2kk!
(
m

k

)(
n

k

)
(1−α2)

m+n
2

−kHm+n−2k

[
αy

(1− α2)1/2

]
,

(B.10)
which results in

Vy =
exp

(
1

4(1+βyta2
w)

(
y0(p)
aw

+ y0(q)
aw

+ 2βyta
2
w

yt
aw

)2
− 1

2

(
y2
0(p)
a2

w
+ y2

0(q)
a2

w
+ 2βyta

2
w

y2
t

a2
w

))
√

2n+n′πn!n′!(1 + βyta2
w)

×
n∑

i=0

n′∑
j=0

(
n

i

)(
n′

j

)
Hi

(
−
√

2
y0(p)
aw

)
Hj

(
−
√

2
y0(q)
aw

)min(n−i,n′−j)∑
k=0

2kk!
(
n− i

k

)(
n′ − j

k

)

×
(

1− 2
1 + βyta2

w

)n−i+n′−j
2

−k

Hn−i+n′−j−2k

[
y0(p)
aw

+ y0(q)
aw

+ 2βyta
2
w

y
aw√

2(1 + βyta2
w)2 − 4(1 + βyta2

w)

]
.

(B.11)

Now the y and x integrals have been calculated and by joining them together we get

Vnn′(q, p) =
∑

t

Vt
aw√

2βxta2
w

e
−i(paw−qaw)

xt
aw

− (paw−qaw)2

4βxta2
w

×
exp

(
1

4(1+βyta2
w)

(
y0(p)
aw

+ y0(q)
aw

+ 2βyta
2
w

yt
aw

)2
− 1

2

(
y2
0(p)
a2

w
+ y2

0(q)
a2

w
+ 2βyta

2
w

y2
0

a2
w

))
√

2n+n′πn!n′!(1 + βyta2
w)

×
n∑

i=0

n′∑
j=0

(
n

i

)(
n′

j

)
Hi

(
−
√

2
y0(p)
aw

)
Hj

(
−
√

2
y0(q)
aw

)min(n−i,n′−j)∑
k=0

2kk!
(
n− i

k

)(
n′ − j

k

)

×
(

1− 2
1 + βyta2

w

)n−i+n′−j
2

−k

Hn−i+n′−j−2k

[
y0(p)
aw

+ y0(q)
aw

+ 2βyta
2
w

y
aw√

2(1 + βyta2
w)2 − 4(1 + βyta2

w)

]
.

(B.12)

To use this in our calculations we remember that

Unn′(q, p) =
2

~aw

Ωw

Ω2
0

Vnn′(q, p) (B.13)
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Appendix C

Calculations of the initial wavepacket

In equation (3.15) in section 3.1 we have the solution for the wavefunction in the leads. The
initial condition was chosen in equation (3.27) in section 3.4 to be

gn(p) = δnme
−λ(p−p0)2 . (C.1)

Lets write y0(q) = a2
wy0q, where y0 = ωc/Ωw, and insert the initial condition in equation

(C.1) into equation (3.15),

Ψ0(x, y, t) =
∫ ∞

−∞
dqg(q)eiqxΦm(y − y0(q))e

−i

„
a2

w
2

Ω2
0

Ωw
q2+Em

~

«
t

=
1√

2mπ
1
2m!aw

∫ ∞

−∞
dqe

−
„

λ2+
a2

wy2
0

2
+i

a2
w
2

Ω2
0

Ωw
t

«
q2+(2λ2q0+yy0+ix)q−λ2q2

0−
y2

2a2
w
−i Em

~ t

× Hm

(
y − a2

wy0q

aw

)
(C.2)

and do the following change of variables

q =
y

y0a2
w

− k√
λ2 + a2

wy2
0

2 + ia
2
w
2

Ω2
0

Ωw
t

(C.3)

where k is a dimensionless variable. This results in

Ψ0(x, y, t) =
−1√

2mπ
1
2m!aw

(
λ2 + a2

wy2
0

2 + ia
2
w
2

Ω2
0

Ωw
t
)

×
∫ ∞

−∞
dk exp

{
− k2 +

2y
y0a2

w

(
λ2 + a2

wy2
0

2 + ia
2
w
2

Ω2
0

Ωw
t
)
− 2λ2q0 − yy0 − ix√

λ2 + a2
wy2

0
2 + ia

2
w
2

Ω2
0

Ωw
t

k

− y2

y2
0a

4
w

(
λ2 +

a2
wy

2
0

2
+ i

a2
w

2
Ω2

0

Ωw
t

)
+

y

y0a2
w

(
2λ2q0 + yy0 + ix

)
− λ2q20 −

y2

2a2
w

− i
Em

~
t

}
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× Hm

 kaw√
λ2

y2
0

+ a2
w
2 + i a2

w

2y2
0

Ω2
0

Ωw
t

 . (C.4)

To simplify this equation we define four new variables;

A =
−1√

2mπ
1
2m!aw

(
λ2 + a2

wy2
0

2 + ia
2
w
2

Ω2
0

Ωw
t
) , (C.5)

ξ =
2y

y0a2
w

(
λ2 + a2

wy2
0

2 + ia
2
w
2

Ω2
0

Ωw
t
)
− 2λ2q0 − yy0 − ix√

λ2 + a2
wy2

0
2 + ia

2
w
2

Ω2
0

Ωw
t

=

(
2y

y0a2
w
− 2q0

)
λ2 + i

(
y
y0

Ω2
0

Ωw
t− x

)
√
λ2 + a2

wy2
0

2 + ia
2
w
2

Ω2
0

Ωw
t

, (C.6)

ζ = − y2

y2
0a

2
w

(
λ2 +

a2
wy

2
0

2
+ i

a2
w

2
Ω2

0

Ωw
t

)
+

y

y0a2
w

(
2λ2q0 + yy0 + ix

)
− λ2q20 −

y2

2a2
w

− i
Em

~
t

=
(

2yq0
y0a2

w

− y2

y2
0a

2
w

− q20

)
λ2 + i

(
y

y0a2
w

x− y2

2y2
0a

2
w

Ω2
0

Ωw
t− Em

~
t

)
(C.7)

and
α =

1√
λ2

y2
0

+ a2
w
2 + i a2

w

2y2
0

Ω2
0

Ωw
t

. (C.8)

Our integral can then be solved as [28]

Ψ0(x, y, t) = A

∫ ∞

−∞
dke−k2+ξk+ζHm(αk) = Ae

ξ2

4
+ζ

∫ ∞

−∞
dke−(k− ξ

2
)2Hm(αk)

= Ae
ξ2

4
+ζ√π(1− α2)

m
2 Hm

(
αξ

2(1− α2)
1
2

)

= −
√

π

2mπ
1
2m!aw

(
λ2 + a2

wy2
0

2 + ia
2
w
2

Ω2
0

Ωw
t
) exp

{[( 2y
y0a2

w
− 2q0

)
λ2 + i

(
y
y0

Ω2
0

Ωw
t− x

)]2
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The result in equation C.9 is then used in the numerical calculations. But if we look at this
result furter we see that the probability distribution for the packet is
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(C.10)

If we compare equation (C.10) to the one dimensional case [27], where1

|ψ(x, t)|2 =
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 (C.11)

gives the width

∆x(t) =
a

2

√
1 +

4~2t2

m2a4
, (C.12)

we can estimate how the width of the wavepacket in equation (C.10) should develop in time

∆x(t) ≈
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2

√√√√1 +
a4

wΩ4
0

4Ω2
w

(
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0a2
w

2

)2 t
2. (C.13)

This can be used to configure the velocity of the wavepacket and the time length of the simu-
lations.

1Here a/2 is the initial width of the wavepacket, k0 the center of its momentum distribution and m
the mass of the particle it represents.
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