Magnetic nanoparticles in composite materials and devices

Snorri Ingvarsson Technology in Society..., March 19 2004

Research Division, Yorktown Heights, NY

Nanoparticles?

 Nanoparticles are particles (typically crystals of inorganic elements) for which the largest characteristic dimension is ~1-100 nm (1nm = 10⁻⁹ m = 0.000000001 m).

 They are sticky little things that adhere to anything (including each other)!
Remedy: Coat them with "ligand" molecules.

Nanoparticle Stabilization

Monodisperse magnetic nanoparticle

Solution phase synthesis:

Dicobalt octacarbonyl, Co₂(CO)₈ Phenyl ether Tributylphosphine Oleic acid ↓ 200 °C

Ligand: Oleic acid

Co-nanocrystal – core

Size selective precipitation

12 nm SrTiO₃ for Strontium titanium isopropoxide

Self-assembly

Under controlled evaporation particles self-assemble...

...into regular 2D (or 3D) arrays.

See e.g.: S. Sun et al., J. Am. Chem. Soc. 124, 2884 (2002).

Why the sudden interest in NPs?

- Monodisperse particles.
- Self-assembly:
 - Can get "defect free" perfect lattices.
 - Can deposit films 1 monolayer thick...
 - ...and monolayer by monolayer on top of that!
 - Can even grow 2 element 3D crystals!

(See: F. Redl *et al.,* Nature, **423**, 968 (26 June 2003).)

Molecular cascades computers!

From research.ibm.com

CO-molecules on Cu-surface. In an STM you can set up cascades that perform logic functions.

The example on the left is an AND gate, inputs on the left and outputs on the right.

STM and e-beam (reading and writing with individual "needles") is impractically slow, not scalable. Great for research purposes, not for industry.

Preliminary Recording (A. Moser, D. Weller)

single particle stability limit (\cong 20 TBit/cm²)

D. Weller

Biosensors: Surface plasmons

From Nanotechweb.org, July 2003

Wavelength of scattered light depends on dielectric surroundings.

- (a) A single 40 nm Au nanoparticle functionalized with biotin-BSA molecules.
- (b) Solution injected with the protein streptavidin.
- (c) Streptavidin bound to biotin on Au-surface.

Sticking viruses to nanoparticles

SPOTTING A VIRUS

Creating a viral nanosensor

From New Scientist, August 2003

Iron oxide nanoparticles coated with dextran (a sugar), to which antibodies easily attach.

Underdamped dynamics 101:

No good. Ball bounces back and forth.

Good. Ball ends up in the slot you aimed for.

Problem 2:

Large electrical currents cause heating.

- Bit is more stable if anisotropy is large...
- ...but requires a higher switching field/current.
- That means increased heating...there's too much of that in computers already!

Magnetic liners

Increases field.

Magnetic poles disturb. Usually some hysteresis.

Increases field.

No magnetic poles. No hysteresis.

Unique magnetic properties of nanoparticles provide a *significant improvement* over other liners.

lðntæknistofnun-Háskóli Íslands "Trapping and characterization of an individual nanoparticle".

A 20 nm diameter Pd nanoparticle trapped between two Pt electrodes patterned on top of a Si/SiN substrate. (From A. Bezryadin et al., *Appl. Phys. Lett.* **71**, 1273–1275 (1997)).

Future: Stretch *molecules* across such a gap, venturing into molecular electronics. Collaborate with theory groups at Háskóli Íslands.

What does nanotechnology bring us?

New research tools. Composite materials. New devices, gadgets.

Opportunity to explore and to do things we weren't able to do before.

Some nanoparticle (NP) applications

Magnetic NP:

- Harder permanent magnets (i.e. larger coercivity). Hao Zeng *et al.* Appl. Phys. Lett., **80**, 2583 (2002).
- Contrast agents in MRI imaging.
- Bioconjugated nanoparticles in medicine. Attach to cancer cells. Destroy cancer cells? Antibodies that viruses stick to.
- Purification of cells and biomacromolecules from complex mixtures.
- High frequency (radio freq.) electromagnetic properties. Ingvarsson *et al.* 2 patent applications.

Magnetic and other NP:

- Catalysts (A/V ~ 1/d).
- Seeds for C-nanotubes.
- Self-assembled quantum dots. C. B. Murray *et al.* J. Am. Chem. Soc. 115 (1993).
- Size-tunable infrared electroluminescence (1000 – 1600 nm) in PbS nanocrystals embedded in semiconducting polymer.

L. Bakueva *et al.*, Appl. Phys. Lett., **82**, 2895 (2003).

- Electro-optical and magnetooptical applications.
- Biosensors. (Surface plasmons in Au e.g.).
- Paper preservation (aging) with Calcium Hydroxide NPs.