Problem 1: (11-07-54)
Compare the electrical potential from a point charge and a short line charge

Pout charge:
$V_{p}(x)=\frac{1}{4 \pi \epsilon_{0}} \frac{\Phi}{x}, V_{p}(\infty)=0 \leftarrow$ boundary condition
line charge:
Use Ex. $7.13 \rightarrow V_{L}(x)=\frac{1}{4 \pi \epsilon_{0}} \lambda \operatorname{Ln}\left[\frac{L+\sqrt{L^{2}+4 x^{2}}}{-L+\sqrt{L^{2}+4 x^{2}}}\right]$
same boundary condition, $\lambda L=Q$

Problem 2: (11-07-74)

$q=+3 \mu C$
$a=2 \mathrm{~cm}$ the configuration

$$
W=\frac{k}{2} \sum_{\substack{i, j \\ i \neq j}}^{N} \frac{q_{i} q_{j}}{r_{i j}}
$$

sum over pairs, does not matter where the origin of the coordinate system is,
7.8/2 pairs

$$
\begin{aligned}
W & =k q^{2}\left\{\frac{3}{a}+\frac{3}{\sqrt{2} a}+\frac{1}{\sqrt{3} a}\right] \cdot 28 \\
& =\frac{k q^{2}}{a}\left\{3 \cdot \frac{3}{\sqrt{2}}+\sqrt{3}\right] \cdot 28 \\
& =\frac{k q^{2}}{a^{1}} \cdot 160
\end{aligned}
$$

$$
V_{L}(x)=\frac{Q}{4 \pi \epsilon_{\mathrm{c}} L} \ln \left[\frac{\sqrt{1+4\left(\frac{x}{L}\right)^{2}}+1}{\sqrt{1+4\left(\frac{x}{L}\right)^{2}}-1}\right\} \rightarrow \begin{aligned}
& \operatorname{plot}\left(\frac{4 \pi \epsilon_{0} L V}{Q}\right) v \cdot S \cdot \frac{x}{L} \\
& \text { dimensionLess }
\end{aligned}
$$

$$
V_{p}(x)=\frac{Q}{4 \pi \epsilon_{0} L}\left(\frac{L}{x}\right)
$$

close to the charge the potential of the point charge is stronger. At distance $x / L=1$ both have the same value, and at infinity they have the same value o why? Yes, as far away both toed to look like a point charge. This would never be true for an infinite line charge, which does not have any natural length scale

Problem 3: (11-08-38)
Initially $\longrightarrow \underline{\text { Finally }}$

$V=500 \mathrm{~V}$
a) find Q_{1}^{i}

init

$$
c_{2}=1 O_{p} f
$$

$$
C_{1}=\frac{Q_{1}^{i}}{V_{1}^{i}} \rightarrow Q_{1}^{i}=V_{1}^{i} C_{1}
$$

b) Find Q_{1}^{f} and Q_{2}^{f}
c) $V_{1}^{f}=V_{2}^{f}$: equilibrium, we us this in b)
$V_{1}^{f}=\frac{Q_{1}^{f}}{C_{1}}$ and $V_{2}^{f}=\frac{Q_{2}^{f}}{C_{2}}$
Problem 4: (11-09-58)
100 W
16 W LED

Q_{1}^{f} and Q_{2}^{f}
(1) $\rightarrow Q_{2}^{F}=Q_{1}^{f} \frac{C_{2}}{C_{1}}$ use in 2

$$
\begin{array}{ll}
\rightarrow Q_{1}^{f}+Q_{1}^{f} \frac{C_{2}}{C_{1}}=Q_{1}^{i} \rightarrow Q_{1}^{f}\left[1+\frac{C_{2}}{C_{1}}\right]=Q_{1}^{i} \\
\rightarrow Q_{1}^{f}=\frac{Q_{1}^{i}}{1+\frac{C_{2}}{C_{1}}} & Q_{2}^{f}=\frac{Q_{1}^{i} \frac{C_{2}}{C_{1}}}{1+\frac{C_{2}}{C_{1}}}
\end{array}
$$

incand.

$$
1 k W h_{r}=\$ 0.10
$$

4 hr per day in one year

$$
\begin{aligned}
& \rightarrow P_{L E D} \cdot 4 \cdot 365=16 \cdot 4 \cdot 365=\text { Energy } \\
& =23360 \mathrm{Whr} \\
& =23.360 \text { kWh } \\
& \rightarrow \text { Cost }=\$ 2.34
\end{aligned}
$$

