Problem 1: (7-07-48)	Problem 2: (1-07-54)
$M_{1} = 5.0 \text{ kg} \qquad \left(E_{\text{kin}}\right)_{1} = 5\left(E_{\text{kin}}\right)_{2}$ $M_{2} = 8.0 \text{ kg} \qquad \left(E_{\text{kin}}\right)_{1} = 5\left(E_{\text{kin}}\right)_{2}$ $\longrightarrow \frac{1}{2}M_{1}V_{1}^{2} = \frac{3}{2}H_{2}V_{2}^{2}$	$H = 5.0 \text{ kg} \qquad a = 2.0 \text{ m/s}^2$ $F_{\text{rest}} = F_{\text{rest}}$ $F_{\text{rest}} = 0.10 \text{ m}$
$\implies \left(\begin{array}{c} \frac{\mathcal{V}_{i}^{2}}{\mathcal{V}_{z}^{2}} \end{array} \right) = \Im \frac{\mathcal{M}_{z}}{\mathcal{M}_{i}}$	Use the general eq. $W_{AB} = \int F \cdot dr$
$ \rightarrow \frac{V_1}{V_2} = \sqrt{3\frac{M_2}{M_1}} = \sqrt{\frac{3.8.0}{5.0}} = 2.2$	$F_{\text{ret}} = F - f_{\mu}$ (1D> use a sign to indicate the direction of a vector) (b) $F_{\text{ret}} = Ma^{-} = F - f_{\mu} = F - \mu_{\kappa}N = Ma^{-}$
	$ \frac{W_{0ik} f_{\mu}}{W^{f_{\mu}}} = \int_{M} \overline{f_{\mu}} \cdot d\overline{r} = -\overline{f_{\mu}} \cdot \Delta X = -\mu_{k} Mg \cdot \Delta X $
	> f dissipates energy from M
C) work of F_{wet} (3) $W^{F_{wet}} = Ma \Delta X$	<u>Problem 3:</u> (1-08-28) 1D wotion in force field $F(x) = \left(\frac{3}{\sqrt{x^{1}}}\right) N$ which in reality means that "3" has dimension
(a) Work of F $W^{F} = F \cdot \Delta X = \{ Ma + \mu_{k} Mg \} \Delta X \}$ $\longrightarrow W^{F} = W^{F_{wet}} - W^{F_{\mu}}$	$\frac{x_{o} = 2.0 \text{ m}}{1 \text{ m}} \qquad \begin{array}{c} x_{i} = 7.0 \text{ m} \\ \hline & 1 \end{array} > x \qquad M = 2.0 \text{ eg} \\ v_{o} = 6.0 \text{ m/s} \qquad v_{i} = ? \end{array}$
d) ΔE_{kin} ? $\Delta E_{pot} = 0$ $L \rightarrow \Delta E_{kin} = W^{F_{wet}} = Ma \cdot AX$	No friction, no dissipation, 1D conservative force $\longrightarrow \Delta E_{total} = O$ $F(x) = -\frac{dU(x)}{dx} = (\frac{3}{\sqrt{x^{1}}})N$
= 5.0 kg · 2.0 m/s² · 0,1 m	$\rightarrow U(x) = -6 \sqrt{x^7} + V_0$
= 1.0 J	$U(X) - U_{o} = \left(-6 \sqrt{X'}\right)N$ $U(7) = -6 \sqrt{7} + U_{o}$ $U(2) - 6 \sqrt{2} + U_{o}$ $\int_{-\infty}^{-\infty} \left[U(7) - U(2)\right] = -6\left[\sqrt{7} - \sqrt{2}\right]$

$$\Delta E_{kun} = \frac{M}{2} \left\{ V_{i}^{2} - V_{o}^{2} \right\}$$
and
$$\Delta E_{kun} + \Delta U = 0$$

$$\rightarrow \frac{M}{2} \left\{ V_{i}^{2} - V_{o}^{2} \right\} - 6 \left\{ \left[\overline{r}^{2} - \sqrt{2} \right] \right\} = 0$$

$$\rightarrow V_{i}^{2} = V_{o}^{2} + \frac{12}{M} \left\{ \left[\overline{r}^{2} - \overline{r} \right] \right\}$$

$$V_{i} = \left[V_{o}^{2} + \frac{12}{M} \left\{ \left[\overline{r}^{2} - \overline{r} \right] \right\} - 6 \left[\overline{r}^{2} - \overline{r} \right] \right\}$$

I consider the system to be the mass and the force field, thus there is no external force working on the mass. If the force field is considered to be an external one, then I have to calculate how the external force changes the kinetic energy of the mass by doing work on it

Problem 4 (1-08-40)

$$M = 40 \text{ hg}$$

$$S_{i} = 14.2 \text{ m}$$

$$V_{i} = 0$$

$$V_{i} = 0$$
Find F_{μ}
component of gravity pulling the girl down the slope $-M_{0} \le i 0.6$
the total force against her motion $-F_{\mu} - M_{0} \le i 0.6$

$$-> \alpha = -\frac{f_{\mu}}{M} - 9 \le i 0.6$$
, $U \le U^{2} = V_{0}^{2} + 2\alpha \le 0$

$$-> 0 = V_{0}^{2} - 2 \le \frac{F_{\mu}}{M} - 2 \le 9 \le i 0.6$$

$$-> (-F_{\mu} = \frac{MV_{0}^{2}}{2 \le 0} - M_{0} \le 0.6)$$