Problem 1: Estimate surface area A of human being with mass M and height h
(1) here is good to check the dimension

Cylindrical human should give us lower bounds for A, ("spherical cow":))

$$
\begin{aligned}
& M=\rho \cdot V=\rho \cdot h \cdot \pi r^{2}, \quad V: \text { volume, } S: \text { density } \\
& A=\underbrace{h \cdot 2 \pi r}_{\text {side }}+\underbrace{2 \cdot \pi r^{2}}_{\text {top }+ \text { bottom }} \\
& \rightarrow r^{2}=\frac{M}{g^{h \pi}} \rightarrow r=\sqrt{\frac{M}{S^{h} \pi}} \\
& \longrightarrow \sqrt{A}=h 2 \pi \sqrt{\frac{M}{\rho^{h \pi}}}+\frac{2 \pi M}{\rho^{h \pi}} \\
& =2 \sqrt{\frac{h M \pi}{S}}+\frac{2 M}{\rho^{h}}
\end{aligned}
$$

Problem 2: (1-01-70)
72.0 beats/ min
a) Beats in 2.0 yr

$$
\left.\begin{array}{l}
\left\{2 \mathrm{yr}=2 \cdot 365 \cdot 24 \cdot 60 \mathrm{~min}=1.0512 \cdot 10^{6} \mathrm{~min}\right\} \\
2.0 \mathrm{yr} \rightarrow \mathrm{~V}
\end{array}=7.20 \cdot 10^{1} \mathrm{beat} / \mathrm{min} \cdot 1.1 \cdot 10^{6} \mathrm{~min}\right\}
$$

b) 2.00 yr

$$
\begin{aligned}
N & =7.20 \cdot 10^{1} \text { beats/min } 1.0512 \cdot 10^{7} \mathrm{~min} \\
& =7.57 \cdot 10^{7}
\end{aligned}
$$

C) 2.000 yr
even though the time is known with more accuracy, the heart rate only has 3 significant digits $\rightarrow \quad N=7.57 \cdot 10^{7}$

Problem 3: (1-01-84)
Box:

$$
\begin{aligned}
a=1.80 & \pm 0.1 \mathrm{~cm} \\
b=2.05 & \pm 0.02 \mathrm{~cm} \\
C=3.1 & \pm 0.1 \mathrm{~cm} \\
V=a b c & =(a \pm \Delta a)(b \pm \Delta b)(c \pm \Delta c) \\
& \left.=a b c\left(1 \pm \frac{\Delta a}{a}\right)\left(1 \pm \frac{\Delta b}{b}\right)\left(1 \pm \frac{\Delta c}{c}\right)\right) \\
& \simeq a b c\left\{1 \pm \frac{\Delta a}{a} \pm \frac{\Delta b}{b} \pm \frac{\Delta c}{c}\right\} \\
& =a b c \pm[b c \Delta a+a c \Delta b+a b \Delta c\} \\
& =\left[1.1 \cdot 10^{1} \pm 2\right\} \mathrm{cm}^{3}=[11 \pm 2] c m^{3}
\end{aligned}
$$

discard terms with

Problem 4: (1-02-72)

Carterian (2,Y)
Polar $\left(r, \frac{\pi}{6}\right)$

$$
\rightarrow \quad \rightarrow \quad \rightarrow y=\frac{4}{\sqrt{3}} \rightarrow \text {, as } y=\frac{r}{2}
$$

$\begin{array}{ll}x=2 & x=r \cos \varphi \\ \varphi=\frac{\pi}{6} & y=r \operatorname{sen} \varphi \quad r=\sqrt{x^{2}+y^{2}} \\ r=\sqrt{4+y^{2}} \quad \text { and } & \square y=\frac{r}{2} \quad, \cos \sin \frac{\pi}{6}=\frac{1}{2}\end{array}$

$$
\rightarrow r=\sqrt{4+\frac{r^{2}}{4}} \rightarrow r^{2}=4+\frac{r^{2}}{4}
$$

$$
\rightarrow\left\{1-\frac{1}{4}\right\} r^{2}=4 \quad r^{2}=\frac{4}{1-\frac{1}{4}}=\frac{16}{3}
$$

