I-OI-50
Check which equations for volume v and area A are dimensionally consistent
a) $V=\pi r^{2} h, \quad[V]=L^{2} \cdot L=L^{3}, O K$
b) $A=2 \pi r^{2}+2 \pi r h, \quad[A]=L^{2}+L \cdot L=L^{2}, O K$
c) $V=0,5 b h$, if $[b]=L \rightarrow[V]=L \cdot L=L^{2}$, not oK
d) $V=\pi d^{2}, \quad[V]=L^{2}$, not OK
e) $V=\pi d^{3} / 6, \quad[V]=L^{3}, \quad O K$

1-01-53

$$
[s]=L, \quad[t]=T, \quad v=\frac{d s}{d t}, \quad a=\frac{d v}{d t}
$$

$->$
a) $[v]=\frac{L}{T}$
b) $[a]=\frac{L}{T} \cdot \frac{1}{T}=\frac{L}{T^{2}}$

1-01-64
Estimate the mass of a virus. Lets take C-19, it has close to spherical shape
in https///www.ncbi.nlm.nih.gov/pmc/articles/PMC7224694/we see that the diameter of the $C-19$ virus is approximately $100 \mathrm{~nm}, \quad d=100 \mathrm{~nm}=100 \cdot 10^{-9} \mathrm{~m}=10^{-7} \mathrm{~m}$

$$
\begin{aligned}
V=\frac{4 \pi}{3} r^{3}=\frac{4 \pi}{3}\left(\frac{d}{2}\right)^{3}=\frac{4 \pi}{3 \cdot 8} d^{3} & \approx 0.52 \cdot 10^{-21} \mathrm{~m}^{3} \\
& \sim 0.5 \cdot 10^{6} \mathrm{~nm}^{3}
\end{aligned}
$$

we estimate the virus to have density close to water

$$
\begin{aligned}
\rho_{\mathrm{H}_{2} \mathrm{O}}=1000 \mathrm{~kg} / \mathrm{m}^{3} \quad \mathrm{~m}=\mathrm{gV} & \simeq 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 0,5 \cdot 10^{-21} \mathrm{~m}^{3} \\
& \sim 0,5 \cdot 10^{-18} \mathrm{~kg}=0,5 \mathrm{fg}
\end{aligned}
$$

So, we estimate the mass of a $C-19$ to be 0.5 fg , half a femtogram.
C, N, O, all have similar mass, and H is in water and in the virus.
For fun there is a publication estimating the total mass of all $C-19$ viruses during the pandemic https://www.pnas.org/doi/10.1073/pnas.2024815118
c) $\left[\int v d t\right]=\frac{L}{T} T=L$
d) $\left[\int a d t\right]=\frac{L}{T^{2}} \cdot T=\frac{L}{T}$
e) $\left[\frac{d a}{d t}\right]=\frac{L}{T^{2}} \cdot \frac{1}{T}=\frac{L}{T^{3}}$
f) $E_{k l u}=\frac{1}{2} m\left(\frac{d v}{d t}\right)^{2} \rightarrow\left[E_{k c u}\right]=M \frac{L^{2}}{T^{2}}$
9) $E_{p o t}=\frac{1}{2} m(\omega x)^{2} \rightarrow\left[E_{p o t}\right]=M \frac{1}{T^{2}} L^{2}, \cos [\omega]=\frac{1}{T}$
so the different forms of energy we will see later all have the same dimension

1-02-70
a) If $\bar{A} \times \bar{F}=\bar{B} \times \bar{F}$ is then $\bar{A}=\bar{B}$?

Remember that for two vectors \bar{G} and \bar{H} parallel or antiparallel means
that

$$
\bar{G} \times \bar{H}=O, \bar{H} \times \bar{G}=0
$$

So, we select \bar{D} parallel to F then

$$
(\bar{A}+\bar{D}) \times \bar{F}=\bar{A} \times \bar{F} \text {, but } \bar{A}+\bar{D} \neq \bar{A} \text { generally }
$$

b)
what about $\bar{A} \cdot \bar{F}=\bar{B} \cdot \bar{F}$ is then $\bar{A}=\bar{B}$?
Now we select \bar{D} that is perpendicular to $\bar{F} \rightarrow \bar{D} \cdot \bar{F}=0$ $(\bar{A}+\bar{D}) \cdot \bar{F}=\bar{A} \cdot \bar{F}$, but $\bar{A}+\bar{D} \neq \bar{A}$ generally
C) If $F \bar{A}=\bar{B} F$ is then $\bar{A}=\bar{B}$
F is a scalar $\rightarrow \bar{B} F=F \bar{B}$
$F(\bar{A}-\bar{B})=0$, if $\bar{F} \neq 0$ then $\bar{A}=\bar{B}$

$\underline{1-03-44}$ Linear motion: $v(0)=0, \quad a=30 \mathrm{~m} / \mathrm{s}^{2}$ Coustant $x(0)=0$ Find $x(t)$ at $t=5 \mathrm{~s}$ a Constant $\begin{aligned} & v(t)-\underbrace{v(0)}_{=0}=\int_{0}^{t} a d t^{\prime} \rightarrow v(t)=a t \underbrace{\int_{v_{0}}^{v(t)} d v^{\prime}}_{0}=\int_{0}^{t} a\left(t^{\prime}\right) d t^{\prime} \\ & x(t)-\underbrace{x(0)}_{0}=\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime}=a \int_{0}^{t} t^{\prime} d t^{\prime}=a \frac{t^{2}}{2} \\ & \rightarrow x(t)=\frac{1}{2} a t^{2} \rightarrow x(5)=\frac{30}{2} \frac{m}{s^{2}} 25 s^{2}=375 \mathrm{~m} \end{aligned}$	 a) Sketch the corresponding $v(t)$ graph b) Max values for v(t) occur at $t_{a}, t_{d}, t_{i}, t_{j}$ c) when is $v(t)=0$? $t_{c}, t_{e}, t_{g}, t_{l}$ d) $v(t)<0$ for t_{b}, t_{f}, t_{a}
During the trip of the ball we will hvave twice or $\begin{array}{r} h=v_{0} t-\frac{1}{2} g t^{2} \\ \rightarrow \frac{g}{2} t^{2}-v_{0} t+h=0 \end{array}$ $t^{2}-\frac{2 v_{0}}{g} t+\frac{2 h}{g}=0$ which has two solutions	The roots are $\begin{aligned} t & =\frac{2 v_{0}}{2 g} \pm \frac{1}{2} \sqrt{\left(\frac{2 v_{0}}{g}\right)^{2}-4 \frac{2 h}{g}} \\ & =\frac{v_{0}}{g} \pm \sqrt{\left(\frac{v_{0}}{g}\right)^{2}-\frac{2 h}{g}} \\ & =2 \sqrt{\left(\frac{v_{0}}{9}\right)^{2}-\frac{2 h}{g}} \\ & =2 \sqrt{\left(\frac{15}{9,81}\right)^{2} s^{2}-\frac{2.7}{9,81} s^{2}} \end{aligned}$ $\rightarrow \Delta t=2 \sqrt{\left(\frac{v_{0}}{9}\right)^{2}-\frac{2 h}{9}}$

1-04-44
Max throw range of a boy is 50 m , assume always the same initial speed and find the max height

$$
\begin{aligned}
R= & \frac{v_{0}^{2} \sin \left(2 \theta_{0}\right)}{g} \quad \begin{array}{l}
\max R \text { is for } \theta_{0}=45 \text { as then } \\
\sin \left(2 \theta_{0}\right) \text { takes a max value }
\end{array} \\
& \rightarrow v_{0}^{2}=g R
\end{aligned}
$$

Throw straight up

$$
h=v_{0} t-\frac{1}{2} g t^{2}=\sqrt{g R} t-\frac{9}{2} t^{2}
$$

$$
\begin{aligned}
& \rightarrow t_{m}=\frac{\sqrt{g R}}{g}=\sqrt{\frac{R}{g}} \\
& \begin{aligned}
h_{m}=h\left(t_{m}\right) & =\sqrt{g R} \sqrt{\frac{R}{g}}-\frac{g}{2} \frac{R}{g} \\
& =R-\frac{R}{2}=\frac{R}{2}=25 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

Think, no dirresistance, the motion is symmetric in x. The angle is 45 degrees is the answer $R / 2$ then not realistic?

1-05-36

Find the force of the seat belt on the passanger. we approximate by assuming constant acceleration
stops in 45.0 m

$$
\begin{aligned}
& v=v_{0}-a t \text { or } V^{2}=v_{0}^{2}-2 a d \\
& \rightarrow 0=v_{0}^{2}-2 a d \rightarrow v_{0}^{2}=2 a d \rightarrow a=\frac{v_{0}^{2}}{2 d}
\end{aligned}
$$

$$
F=m a=m \frac{v_{0}^{2}}{2 d}=\frac{80 \mathrm{~kg}(27,8)^{2} \mathrm{~m}^{2} / \mathrm{s}^{2}}{2 \cdot 45,0 \mathrm{~m}}
$$

$=687 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=687 \mathrm{~N}$ indirection \leftarrow as \bar{a}

1-05-48 Fireman slides down a pole with acceleration $\left\lvert\, \begin{aligned} & |\lg |\end{aligned}\right.$

$$
\begin{aligned}
& \bar{F}_{5} \text { 个 Both focus needed are vertical } \\
& \text { a) } \quad m a=F_{s}-m g \text {, } a<0 \\
& \rightarrow F_{s}=m a+m g=m(a+g)
\end{aligned}
$$

b) $m=90,0 \mathrm{~kg}, \quad a=-5,00 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
F_{s}=m(a+g) & =90,0\{-5,00+9,81] \frac{\mathrm{m}}{s^{2}} \mathrm{pg} \\
& =433 \mathrm{~N}
\end{aligned}
$$

1-05-60
a) Find T in the rope if $v=$ constant, $a=0$, mass less rope

$$
m=60,0 \mathrm{~kg}
$$

\uparrow^{\top}

$$
a m=T-m g
$$

if $a=0 \rightarrow T=\underline{m g}=60.9 .81 \mathrm{~N}$

$$
=589 \mathrm{~N}
$$

b)

$$
\begin{aligned}
a m & =T-m g \text {, now } a=1,50 \mathrm{~m} / \mathrm{s}^{2} \\
\rightarrow T & =m(a+g) \\
& =60 \cdot\{1,50+9,81\} \mathrm{N} \\
& =679 \mathrm{~N}
\end{aligned}
$$

$m=100 \mathrm{~kg} \quad \Theta=30^{\circ}$, or $\frac{\pi}{6} \mathrm{rad}$
How large force F do we need to push the crate up the slope with acceleration ${ }^{2}$?

$$
a=2,0 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
\operatorname{along} x: F-m g \sin \theta=a m \rightarrow F & =a m+m g \sin \theta \\
& =m\{a+g \sin \theta\} \\
\rightarrow F & =100\left\{2,0+9,81 \cdot \sin \left(\frac{\pi}{6}\right)\right] \mathrm{kg} \frac{m}{s^{2}}=691 \mathrm{~N}
\end{aligned}
$$

1-06-44

(mi):

$$
-m g \sin \alpha+T=a m
$$

(M): $\quad \operatorname{Mg} \operatorname{Sin} \beta-T=a M$
we can add the two equations to eliminate T :

$$
-m g \sin \alpha+M g \sin \beta=a m+a M \quad a=2,34 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\rightarrow a=\frac{g\{M \sin \beta-m \sin \alpha\}}{m+M} \quad \begin{aligned}
& \text { notice how the direction } \\
& \text { of the acceleration depends }
\end{aligned}
$$ on m, M, and the angles

To find T we obviously can then subtract the equations

$$
\{m-M\} \quad \text { symbolically }
$$

1-06-56

$$
\begin{aligned}
& a=0 \quad \rightarrow \bar{F}_{s}+\bar{F}=0 \\
& \text { i.e. } \quad \operatorname{MgS} \operatorname{Su} \theta=\mu_{s} \operatorname{Mg} \operatorname{Cos} \theta \\
& \rightarrow \operatorname{Sin} \theta=\mu_{s} \operatorname{Cos} \theta \rightarrow \tan \theta=\mu_{s} \\
& \rightarrow \theta=\arctan \mu_{s}
\end{aligned}
$$

$$
f_{s}=\mu_{s} N=\mu_{s} M g \operatorname{Cos} \theta
$$

$$
F=M g \operatorname{Scn} \theta
$$

$$
\begin{aligned}
& -m g \operatorname{Sin} \alpha-M g \operatorname{Sin} \beta+2 T=a\{m-M\} \\
\rightarrow & -g\{m \sin \alpha+M \sin \beta\}+2 T=\frac{g\{M \sin \beta-m \sin \alpha](m-M)}{m+M} \\
\rightarrow & T=\frac{g}{2}\{m \operatorname{Sin} \alpha+M \sin \beta\}+\frac{g}{2}\{M \sin \beta-m \sin \alpha\} \frac{m-M}{m+M}
\end{aligned}
$$

$$
T \text { for } a=0
$$

This term vanishes if $a=0$
or we could have used

$$
=82.4 \mathrm{~N}
$$

$a \rightarrow m$:

$$
\begin{aligned}
& :-\underline{-m} \sin \alpha+T=\frac{m g}{m+M}\{M \sin \beta-m \sin \alpha\} \\
& \rightarrow T=m g \sin \alpha+\frac{m g}{m+M}\{M \sin \beta-m \sin \alpha\}
\end{aligned}
$$

1-06-74
The Bohr model

$$
\begin{array}{ll}
R=5,28 \cdot 10^{-11} \mathrm{~m} \text { fore } & F_{c}
\end{array}=m_{e} \frac{U^{2}}{R}
$$

Corresponding acceleration

$$
\begin{array}{r}
a_{c}=\frac{v^{2}}{R}=a \cdot 1 O^{22} \mathrm{~m} / \mathrm{s}^{2}!, \quad \text { but } \ldots . \\
L=O \mathrm{in} Q M
\end{array}
$$

1-06-88
Air resistance on a skydiver $f=-b v^{2}, v_{T}=60 \mathrm{~m} / \mathrm{s}$

$$
M=50 \mathrm{~kg}, \text { fund } b
$$

Equation of motion

$$
\begin{aligned}
\underbrace{m \frac{d v}{d t}=}_{=0}= & M g-b v^{2} \\
\rightarrow b & =\frac{M g v_{T}^{2}}{v_{T}^{2}}=\frac{50 \mathrm{~kg} \cdot 9,81 \mathrm{~m} / \mathrm{s}^{2}}{(60)^{2} \frac{\mathrm{~m}^{2}}{s^{2}}} \\
& =0,136 \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

1-07-40
Force of a bungee cord is $\bar{F}(x)=k_{1} x+k_{2} x^{3}, \quad k_{1}=204 \frac{\mathrm{~N}}{\mathrm{~m}}$
How much work is needed to strech it $\quad k_{2}=-0,233 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}$
to $\Delta x=16,7 \mathrm{~m}$

$$
\begin{gathered}
d W=\bar{F} \cdot d \bar{r} \\
W(\Delta x)-W(0)=\int_{0}^{\Delta x} F(x) d x \\
\quad=\int_{0}^{\Delta x} d x\left[k_{1} x+k_{2} x^{3}\right]=\left.\left[k_{1} \frac{x^{2}}{2}+k_{2} \frac{x^{4}}{4}\right]\right|_{0} ^{\Delta x} \\
=k_{1} \frac{(\Delta x)^{2}}{2}+k_{2} \frac{(\Delta x)^{4}}{4}
\end{gathered}
$$

How much work does the work of friction do?

Total energy is conseved. Note initial with "i" and final with "f"

$$
E_{p o t}^{i}=M g h, E_{p o t}^{f}=0, \rightarrow \Delta E_{p o t}=E_{p o t}^{f}-E_{p o t}^{i}=-M g h
$$

$$
E_{k i n}^{i}=O, E_{\text {kin }}^{f}=\frac{1}{2} M V^{2}, \rightarrow \Delta E_{\text {kin }}=\frac{1}{2} M V^{2}
$$

If there was no resistance, then

$$
\Delta E_{\text {Total }}=0=\Delta E_{\text {pun }}+\Delta E_{p o t}-\frac{1}{2} M V^{2}-M g h
$$

but we get

$$
\Delta E_{\text {Total }}=-1,16 \mathrm{Nm} \rightarrow-1,16 \mathrm{Nm} \text { is. the work done by }
$$

the friction

1-08-26

$$
U(x)=-\frac{a}{x}+\frac{b}{x^{2}}
$$

$$
F=-\frac{d U(x)}{d x}=-\frac{a}{x^{2}}+\frac{2 b}{x^{3}} \quad \text { hvaða kraftur gaeti petta veriz? }
$$

1-08-36 Tarsan jumps onto a vine with $v=9.0 \mathrm{~m} / \mathrm{s}$

a) how high can he swing?

$$
E_{k}^{i}=\frac{1}{2} M v^{2}
$$

the highest he could get is if all the kinetic energy is changed into potential

$$
\begin{aligned}
& \text { energy } \\
& E_{\text {pot }}=M g h=\frac{1}{2} M v^{2} \rightarrow g h=\frac{1}{2} v^{2} \rightarrow h=\frac{v^{2}}{2 g}
\end{aligned}
$$

b) Does the length of the vine influence h ?

$$
\begin{aligned}
& \qquad \begin{array}{l}
=\frac{9^{2}}{2 \cdot 9,81} \mathrm{~m} \\
\\
=4,13 \mathrm{~m}
\end{array} \\
& \text { Independent of } 91
\end{aligned}
$$ Not if $L>h$, otherwise Tarsan could be

in trouble.

$$
F(x)=-\frac{d U}{d x}
$$

a) Find $F(x)$ for some values of x

$$
\begin{aligned}
& F(2)=O \\
& F(5)=-\frac{12-4}{6-4} N=-4 \mathrm{~N} \\
& F(8)=-\frac{(-12-12)}{10-6}=+6 \mathrm{~N} \\
& F(12)=0
\end{aligned}
$$

b) If the total energy of a particle is -6.0 J , find min and $\max \times$ for the motion of the particle
$x_{\text {mm }}=9 \mathrm{~m}, X_{\text {max }}=15 \mathrm{~m}$ bound motion
C) If $E_{T}=2,0 \mathrm{~J}$, bit more difficult, find the slope in the region $\pm 6 \mathrm{~J} / \mathrm{m}$

$$
\rightarrow \quad x_{\operatorname{mm}}=\left(8-\frac{1}{3}\right) m, \quad x_{\max }=\left(16+\frac{1}{3}\right) m
$$

d) If the total energy is 16 J , what is the velocity of the partice
at $x=2,5,8,12$?
$E_{T}=16 \mathrm{~J}, \quad E_{\text {pot }}=U(x), \quad E_{k}=\frac{1}{2} m v^{2}$
$E_{T}=\frac{1}{2} m V^{2}+U(x) \rightarrow \frac{1}{2} m V^{2}=E_{T}-U(x)$
$\rightarrow V(x)=\sqrt{\frac{2}{m}\left\{E_{T}-U(x)\right\}}$
$m=0,50 \mathrm{~kg}$
$V(2)=\sqrt{\frac{2}{0,50}\{16-4\}} \mathrm{m} / \mathrm{s}=6,9 \mathrm{~m} / \mathrm{s}$

1-09-36
identical pucks on a hooky air table $m_{1}=m_{2}=m$ Elastic collision, $\Delta E_{T}=0$

$\Delta \bar{p}=O$, no external force
Find w and ϕ
Conservation of momentum
(y: $\quad m u \sin \theta+m w \sin \phi=0$
(x):

$$
\begin{align*}
& m v+0=m u \cos \theta+m w \cos \phi \tag{2}\\
& \theta=\frac{\pi}{6} \rightarrow \sin \theta=\frac{1}{2}, \cos \theta=\frac{\sqrt{3}}{2}
\end{align*}
$$

Conservation of energy

$$
\frac{1}{2} m v^{2}+0=\frac{1}{2} m U^{2}+\frac{1}{2} m w^{2}
$$

$$
\begin{aligned}
& {[\cos \phi-\sqrt{3} \sin \phi]^{2}=1+4 \sin ^{2} \phi} \\
& \rightarrow \cos ^{2} \phi+3 \sin ^{2} \phi-2 \sqrt{3} \cos \phi \cdot \sin \phi=1+4 \sin ^{2} \phi
\end{aligned}
$$

use the fact that $\cos ^{2} \phi+5 \operatorname{cu}^{2} \phi=1$

$$
\rightarrow \sin ^{2} \phi=-\sqrt{3} \sin \phi \cdot \operatorname{Cos} \phi \rightarrow \sin \phi=-\sqrt{3} \operatorname{Cos} \phi
$$

$\rightarrow \quad \phi=\arctan (-\sqrt{3}) \rightarrow \quad \phi=-60^{\circ}$
This we use in (1) and (2)

$$
\rightarrow \begin{aligned}
& \frac{u}{2}-\frac{\sqrt{3}}{2} w=0 \\
& \frac{\sqrt{3}}{2} u+\frac{w}{2}=v
\end{aligned}, v=6, \infty m / s
$$

The solution of this set of linear equations gives

$$
\begin{aligned}
& U=(\sqrt{3})^{3} \simeq 5,20 \mathrm{~m} / \mathrm{s} \\
& w=3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3 equations, we need to find ϕ and w (and u)
Simplify the equations
(1): $\frac{u}{2}+w \sin \phi=0$
(2): $\quad v=\frac{\sqrt{3}}{2} u+w \cos \phi$
(3): $\quad v^{2}=u^{2}+w^{2}$

This is not a system of coupled linear equations, but many routs can be taken to find a solution. I want to start to find the angle ϕ
(1) $\rightarrow u=-2 \omega \sin \phi \rightarrow(2)$

$$
\measuredangle v=-\sqrt{3} w \sin \phi+w \cos \phi=w\{\cos \phi-\sqrt{3} \sin \phi\}
$$

(1) $\rightarrow 3 \rightarrow v^{2}=4 \sin ^{2} \phi \cdot w^{2}+w^{2}=w^{2}\left\{1+4 \sin ^{2} \phi\right]$

These 2 equation I combine to get an equation only for the angle ϕ

The child releases a ball at $t=0$ with no velocity relative to the wagon. The momentum of the total system before $t=0$ is the same as the momentum immediately after the release. There will be no change in the velocity of the wagon and the child.

1-10-66

Find the momentum of inertia of the system with direct integration

$$
\begin{aligned}
& I=\int r^{2} d m=\int_{0}^{L / 6} d m=\left(\frac{m}{L}\right) d x \\
& \rightarrow \int_{0}^{5 L / 6} x^{2} d m=\frac{m}{L}\left\{\int_{0}^{L / 6} x^{2} d x+\int_{0}^{5 L / 6} x^{2} d x\right\}
\end{aligned}
$$

$$
\begin{align*}
I & =\frac{m}{L}\left[\left.\frac{x^{3}}{3}\right|_{0} ^{L / 6}+\left.\frac{x^{3}}{3}\right|_{0} ^{5 L / 6}\right\}=\frac{m}{L}\left[\frac{L^{3}}{3 \cdot 6^{3}}+\frac{L^{3} \cdot 5^{3}}{3 \cdot 6^{3}}\right] \\
& =m L^{2}\left\{\frac{1}{3 \cdot 6^{3}}+\frac{5^{3}}{3 \cdot 6^{3}}\right]=m L^{2}\left[\frac{1+125}{648}\right] \tag{5}\\
& =m L^{2}\left[\frac{63}{324}\right]=m \frac{L^{2}}{12}\left\{\frac{63}{27}\right\}=m \frac{L^{2}}{12} \cdot \frac{7}{3} \tag{*}
\end{align*}
$$

1-10-93
For m :
$\tau_{T}=I \alpha, \quad a=R \alpha, \quad I=\frac{1}{2} m R^{2}, \quad \tau_{T}=R \cdot T$
(3)
(2) \rightarrow (1): $\rightarrow-M g \operatorname{Sin} \theta+\mu M g \operatorname{Cos} \theta+T=G M$
$3-6 \rightarrow-R T=I \frac{a}{R}=\frac{1}{2} m R^{2} \frac{a}{R}=\frac{m}{2} R a$

$$
\rightarrow T=-\frac{m}{2} a
$$

The last equation can be used in (*):

$$
\begin{align*}
& -M g \sin \theta+\mu M g \cos \theta-\frac{m}{2} a=a M \\
\rightarrow & -M g\{\sin \theta-\mu \cos \theta\}=a\left\{M+\frac{m}{2}\right] \\
\rightarrow & a=-g\left[\frac{M}{M+\frac{m}{2}}\right\}\{\sin \theta-\mu \cos \theta]=-3.6 \mathrm{~m} / \mathrm{s}^{2} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \text { (} \\
& y: \quad-M g \cos \theta+N=O
\end{aligned}
$$

1-11-30
we assume the sliding of m does not change the angular momentum of
Ball with $M=40.0 \mathrm{~kg}$ rolls on a horizontal plane surface with velocity $v=6.0 \mathrm{~m} / \mathrm{s}$ How much work is needed to stop it
$I=\frac{2}{5} M R^{2}$ when turning around an axis through the center

$$
\begin{aligned}
& E_{k}=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2}, \quad \omega R=v \\
& E_{k}=\frac{1}{2} M V^{2}+\frac{1}{2} I\left(\frac{v}{R}\right)^{2}=\frac{1}{2} M v^{2}+\frac{2}{10} M v^{2}=\frac{7}{10} M v^{2}
\end{aligned}
$$

$1-11-52$

$$
M\left(\begin{array}{ll}
M=2,0 \mathrm{~kg} & \text { Find } \omega_{f} \\
R=0,60 \mathrm{~m} & \text { after } m \text { has slid } \\
m=0,05 \mathrm{~kg} & \text { to the center } \\
\omega_{i}=2 \cdot 2 \pi \mathrm{~s}^{-1} &
\end{array}\right.
$$

the system $\rightarrow L$ is conserved:

$$
\begin{aligned}
& I_{i} \omega_{i}=I_{f} \omega_{f} \\
& \frac{1}{2} R^{2}\{M+m\} \omega_{i}=\frac{1}{2} M R^{2} \omega_{f} \\
\rightarrow & {[M+m\} \omega_{i}=M \omega_{f} } \\
\rightarrow & \omega_{f}=\frac{M+m}{M} \omega_{i}=(1,025) \omega_{i}=12,88 \mathrm{~Hz}
\end{aligned}
$$

1-14-70
$M=80 \mathrm{~kg}$
M $\rho=955 \mathrm{~kg} / \mathrm{m}^{3}$
b) Find F_{B} due to air
$\rho_{\text {air }}=1.29 \mathrm{~kg} / \mathrm{m}^{3}$ the weight of the air the man displaces is $\mathrm{gV}_{\text {pair }}$

$$
\rightarrow F_{B}=W_{\text {air }}=g V_{\text {air }}=9,81 \mathrm{~m} / \mathrm{s}^{2} \cdot 0,0838 \mathrm{~m}^{3} \cdot 1,29 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
=1,06 \mathrm{~N}
$$

c) $\frac{F_{B}}{w_{M}}=\frac{g V_{\text {air }}}{g M}=\frac{g V_{\text {air }}}{g V \rho}=\frac{\rho_{a i r}}{\rho}=\frac{1,29}{955}=1,35 \cdot 10^{-3}$

1-14-96
Laminar flow through a pipe with fixed cross section, use Eq. (14.19)

$$
Q=\frac{\left(p_{2}-p_{1}\right) \pi r^{4}}{8 \eta l}
$$

Q is the flow rate. we have to find a) how much the flow decreases if the pipe is made narrower $\frac{\Delta r}{r}=-0,0500$ and b) how much it is increased if $\frac{\Delta r}{r}=+0,0500$
If the variation of the radius r is very small, we could have used a linear approximation built on the derivative

$$
\begin{aligned}
\Delta Q & =\frac{\left(p_{1}-p_{2}\right)}{8 \eta l} 4 \pi r^{3} \Delta r=\frac{\left(p_{1}-p_{2}\right)}{8 \eta l} \pi r^{4}\left(\frac{4 \Delta r}{r}\right) \\
& =Q\left(\frac{4 \Delta r}{r}\right)
\end{aligned}
$$

but the variation is not small here, and the authors of the book want a better estimate
wind blows over a house with roof area $A=220 \mathrm{~m}^{2}$, with speed $v=45 \mathrm{~m} / \mathrm{s}$ $p_{0}=8,89 \cdot 10^{4} \mathrm{~N} / \mathrm{m}^{2}$
we use Bernoullis equation and compare to wind still

where p is the pressure on the roof during the wind is blowing

$$
=8.89 \cdot 10^{4} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}-\frac{1}{2} 1.14 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot(45 \mathrm{~m} / \mathrm{s})^{2}=8,775 \cdot 10^{4} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
$$

Like an upward force on the roof

$$
F=\left(p_{0}-p\right) \cdot A=\frac{\rho V^{2}}{2} A=254 \mathrm{kN}
$$

$$
\begin{aligned}
& \Delta Q=\frac{\left(p_{1}-p_{2}\right)}{8 \eta l} \pi(r+\Delta r)^{4}=\frac{\left(p_{1}-p_{2}\right)}{8 \eta l} \pi r^{4}\left\{1+\frac{\Delta r}{r}\right\}^{4} \\
&=Q\left\{1+\frac{\Delta r}{r}\right\}^{4} \\
& \rightarrow \frac{\Delta Q}{Q}=\left\{1+\frac{\Delta r}{r}\right\}^{4}
\end{aligned}
$$

if $\frac{\Delta r}{r}=-0,0500 \rightarrow \frac{\Delta Q}{Q}=0,815$
~ 19% decrease
and if $\frac{\Delta r}{r}=+0.0500 \rightarrow \frac{\Delta Q}{Q}=1.216$
~ 22% increase
Beyond a linear approximation, the results are not symmetric!

1-14-104

which is a huge pressure only applied to a small area probably causing wear and tear. It is probably not fair to compare it to the standard air pressure at sea level $1.013 \cdot 10^{5} \mathrm{~Pa}$
that is homogeneous to the surface of the record, and does not scratch it like the needle

11-01-82

Estimate the energy released by a small thunder shower due to the condensation of the evapoured steam into liquid water

$\} h=1,0 \mathrm{~cm}$

$$
V=\pi R^{2} h, \quad M=V_{g}=\pi R^{2} h g
$$

$R=10^{3} \mathrm{~m}$

$$
L_{v}^{\mathrm{H}_{2} \mathrm{O}} \sim 2256 \mathrm{ky} / \mathrm{kg}
$$

the energy released is

$$
\begin{aligned}
E & =M L_{v}^{H_{20}}=\pi R^{2} \underbrace{h} S_{v}^{H_{2} 0} \\
& \approx \pi\left(10^{3}\right)^{2} \cdot 0,01 \cdot 1000 \cdot 2256=7 \cdot 10^{10} \mathrm{~kJ}=70 T \mathrm{~J}
\end{aligned}
$$

$11-01-100$

A home owner adds $\Delta d=8.0 \mathrm{~cm}$ to the insulation layer of the attic with $d=15 \mathrm{~cm}$ How much does this improve the insulation of the house

Fiber glass:

$$
k=0,042 \frac{w}{\left(m \cdot{ }^{\circ} \mathrm{C}\right)}
$$

we have for the power dissipating from the house

$$
P=P_{\text {sides }}+\frac{k A\left(T_{n}-T_{c}\right)}{(d+\Delta d)}
$$

At the moment we do not worry about $P_{\text {sides, }}$, but we know it is also proportional to $\left(T_{h}-T_{c}\right), \quad P_{\text {sides }}=\beta\left(T_{h}-T_{c}\right)$ we notice that $\Delta d / d$ is by no means small!

Compare to an earthquake of magnitude 6.0 Richter releases $63 T \mathrm{~J}$
$P=P_{\text {ido }}+\frac{k A\left(T_{n}-T_{c}\right)}{d\left(1+\frac{\Delta d}{d}\right)}$
$=P_{\text {sides }}+\frac{k A\left(T_{h}-T_{c}\right)}{d}\left\{1+\frac{\Delta d}{d}+\left(\frac{\Delta d}{d}\right)^{2}-\left(\frac{\Delta d}{d}\right)^{3}+\left(\frac{\Delta d}{d}\right)^{4}+\cdots\right]$
$\rightarrow P-P_{0}=\frac{k A\left(T_{n}-T_{c}\right)}{d} \sum_{k=1}^{\infty}\left(-\frac{\Delta d}{d}\right)^{k}$
where P_{0} is the original power dissipation of the house
$\rightarrow P-P_{0}=\Delta P=\frac{k A\left(T_{u}-T_{c}\right)}{d} \sum_{k=1}^{\infty}\left(-\frac{\Delta d}{d}\right)^{k}$
This not a small reduction
$\begin{aligned} & \text { and without going to } \\ & \text { further calculations }\end{aligned}=\frac{k A\left(T_{n}-T_{c}\right)}{d}\left\{\frac{1}{1+\frac{\Delta d}{d}}-1\right]$
we know that the $=-\frac{k A\left(T_{n}-T_{c}\right)}{d} \cdot 0,35$ area of roof is the largest surface d
of this house

11-0.2-30

$$
\begin{equation*}
T_{c}=25^{\circ} c \tag{4}
\end{equation*}
$$

$$
T_{H}=80^{\circ} \mathrm{C}
$$

$$
\left.\begin{array}{l}
P V=N k_{B} T \tag{3}\\
N=N A
\end{array}\right\} \quad P V=n R T
$$

a) Find n at T_{H}, open bottle

$$
n=\frac{P V}{R T}=\frac{1 \mathrm{~atm} \cdot 0,5 L}{0,0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\text { moL } \cdot \mathrm{K}} \cdot(273+80)}
$$

b) find p_{c} if the

$$
\begin{aligned}
& \text { at } \begin{array}{l}
=0,0173 \mathrm{~mol} \\
\begin{array}{l}
P_{C} V \\
T_{c}
\end{array}=\frac{P_{H} V}{T_{H}} \rightarrow P_{c}
\end{array}=P_{H} \frac{\overline{T_{c}}}{T_{H}} \\
& \\
& =1,0 \text { atm } \frac{(273+25) \mathrm{K}}{(273+80) \mathrm{K}} \\
&
\end{aligned}
$$

11-02-62

sealed room, initially at $24^{\circ} \mathrm{C}$

Closed system, the energy is conserved The melting heat of ice

$$
C_{v}^{\text {air }}=\frac{d}{2} R, \quad d=3+1+1-5
$$

$$
=2,5 R
$$

The energy of the air will be lowered

$$
\Delta Q^{\text {air }}={ }_{n} C_{v}^{\text {air }} \Delta T, \quad \Delta T=T_{i}-T_{f}
$$

The water absorbs energy

$$
m_{H_{2} \mathrm{O}} \cdot L_{+}^{\mathrm{H}_{2} \mathrm{O}}+\Delta Q^{H_{2} \mathrm{O}}, \quad \Delta Q^{\mathrm{H}_{2} \mathrm{O}}=n^{\mathrm{H}_{2} \mathrm{O}} \cdot\left(T_{+}-T_{i}\right), \quad T_{i}=273 \mathrm{~K}
$$

Conservation of energy

$$
n^{\text {air }} \cdot C_{v}^{\text {air }} \cdot\left(T_{0}-T_{f}\right)=m_{H_{2} \mathrm{O}} L_{f}^{H_{2} \mathrm{O}}+n^{H_{2}, 0} C_{v}^{H_{2} c} \cdot\left(T_{f}-T_{i}\right)
$$

$1 \mathrm{~kg} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \rightarrow \quad n^{\mathrm{H}_{2} \mathrm{O}}=\frac{1000 \mathrm{~g}}{18 \mathrm{~g}}=55,6 \mathrm{mdl}$
$24 \mathrm{~m}^{3}$ air $\rightarrow n^{\text {air }}=\frac{P_{0} V}{R T}=\frac{0,97 \text { atm } \cdot 24 \cdot 10^{3} \mathrm{~L}}{0,0821 \frac{\text { L.atm }}{k}(273+24)}$

$$
=955 \mathrm{~mol}
$$

$1 \mathrm{~atm}=1.013 \cdot 10^{5} \mathrm{~Pa}$
$P_{0}=9.83 \cdot 10^{4} \mathrm{~Pa}=\frac{9.83 \cdot 10^{4}}{1.013 \cdot 10^{5}} \mathrm{~atm}=0.97 \mathrm{~atm}$
$T_{f}=\frac{n^{\text {air }} \cdot C_{V}^{\text {ar }} T_{i}-m_{H_{2} \mathrm{O}}^{H_{2}} L_{f}^{H_{2} \mathrm{O}}+C_{v}^{H_{2} \mathrm{O}} T_{i}}{n^{\text {air }} C_{V}^{\text {air }}+n^{H_{20} \mathrm{O}} C_{U}^{H_{2} \mathrm{O}}}$
$=\frac{955 \cdot(2,50 \cdot 8,31)(273+24)-\left(1 \cdot 334 \cdot 10^{3}\right)+4179 \cdot 273}{955 \cdot 2,50 \cdot 8.31+1 \cdot 4179}$
$=279 \mathrm{~K}=6^{\circ} \mathrm{C}$
here I do not use
but in stead the heat capacity of water with respect to mass, I just have to make sure to use the same energy units

$11-03-40$

Ideal gas quasi-static expands isothermally: $\quad \mathrm{P}, \mathrm{V} \rightarrow 4 \mathrm{~V}$
How much heat is needed

$$
\begin{aligned}
& \longrightarrow p V=n R T, \quad d E_{\text {int }}=d Q-d W \\
& \rightarrow E_{\text {int }}=E_{\text {int }}(T), \Delta T=0 \rightarrow \Delta E_{\text {int }}=0 \\
& \rightarrow d Q=d W=p d V=\frac{n R T}{V} \rightarrow \Delta Q=\int_{V}^{4 U} \frac{n R T}{V^{\prime}} d V^{\prime} \\
& \begin{aligned}
\Delta Q & =n R T\left[\left.\ln V^{\prime}\right|_{V} ^{4 U}\right\}
\end{aligned} \\
& =n R T\{\ln (4 V)-\ln (V)] \\
&
\end{aligned}
$$

11-03-72

Ideal diatomic gas at $T_{i}=80 \mathrm{~K}$ compressed adiabatically $\quad V \rightarrow \frac{V}{3}$
Find T_{f}

$$
p V=n R T, \quad d E_{i n t}=d Q-d W, \quad d W=p d V
$$

Adiabatic (óvermiz) $\rightarrow d Q=O, \quad d w \neq O \rightarrow d E_{\text {int }}(T) \neq O \rightarrow \Delta T \neq O$ in section 3.6 the authors of the book derive (3.14):

$$
\begin{aligned}
& T V^{\gamma-1}=\text { Const. } \rightarrow T_{i} V^{\gamma-1}=T_{f}\left(\frac{V}{3}\right)^{\gamma-1} \\
& \rightarrow T_{f}=T_{i}\left[\frac{3 V}{V}\right]^{\gamma-1}=T_{i} 3^{\gamma-1} \\
& \gamma-1=\frac{C_{p}}{C_{v}}-1=\frac{C_{V}+R-C_{V}}{C_{V}}=\frac{R}{C_{v}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Diatomic (tvíatóma) kjörgas } \\
& C_{v}=\frac{d}{2} R=\frac{5}{2} R \text {, as } d=3+1+1 \Leftarrow \text { ritanion } \\
& \begin{aligned}
& C_{v}=\frac{d}{2} R=\frac{5}{2} R, \text { as } d=3+1+1 \\
& \rightarrow \gamma-1=\frac{2 R}{5 R}=\frac{2}{5}
\end{aligned} \\
& \rightarrow T_{F}=T_{i}(3)^{2 / 5}=124 \mathrm{~K}
\end{aligned}
$$

11-04-66

Carnot refrigerator \}

$$
\rightarrow T_{H}=25^{\circ} \mathrm{C}, \rightarrow Q_{H}
$$

freezes $1,5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} / \mathrm{s}, \quad T_{c}=O^{\circ} \mathrm{C}$
How much work/s or power is needed?
Latent heat for ice: $\quad 334 \mathrm{~kJ} / \mathrm{kg}=334 \mathrm{~J} / \mathrm{g}$

$$
\begin{aligned}
\rightarrow Q_{c} & =L_{F} \cdot m_{\text {ce e }}, \quad Q_{c}=K_{R} W, \quad K_{R}=\frac{T}{T_{H}-T_{c}} \\
\rightarrow W & =Q_{c} \frac{1}{K_{R}}=L_{F} \cdot m_{\text {ice }} \frac{1}{K_{R}} \\
P & =W / s=L_{F} \cdot\left(\frac{m_{i c e}}{s}\right) \frac{1}{K_{R}}=46 \mathrm{y} / \mathrm{s}
\end{aligned}
$$

Notice that much higher Q_{H} is pumped into the environment

11-04-76
 $2 \mathrm{O}_{g}$ ice, $T_{c}=0^{\circ} \mathrm{C}$
$300_{9} H_{2} \mathrm{O}, T_{H}=60^{\circ} \mathrm{C}$
Estimate the total change in entropy as the mixture comes to equilibrium at T_{e}
we look at this in steps, the entropy change due to:

1. Melting of the ice
2. Heat transfer from the cold water (coming from the ice) to the hot water
3. mixing of the two bodies of water

The melting is at a fixed temperature

$$
\rightarrow \Delta S_{\text {melting }}=\frac{Q^{i c e}}{T}=\frac{m^{i c e} \cdot L_{+}^{H_{2} 0}}{T_{c}}=\frac{20 \mathrm{~g} \cdot 335 \mathrm{~J} / \mathrm{g}}{273 \mathrm{~K}}
$$

...but, this lowers the temperature of the hot water to

$$
T_{H} \rightarrow T_{H}^{\prime}
$$

$$
\begin{aligned}
& \Delta S_{C}=C \cdot m_{c} \ln \left[\frac{T_{e}}{T_{c}}\right]>0 \\
& \Delta S_{H}=C m_{H} \ln \left[\frac{T_{e}}{T_{H}^{\prime}}\right]<0 \\
& \Delta S_{T_{H} \rightarrow T_{H}^{\prime}}=C m_{H} \cdot \ln \left[\frac{T_{H}^{\prime}}{T_{H}}\right]<0
\end{aligned}
$$

The book does not cover mixing entropy, but wikipedia gives

$$
\Delta S_{m c x}=-n R\left\{\frac{V_{H}}{V_{H}+V_{c}} \ln \left(\frac{V_{H}}{V_{H}+V_{c}}\right)+\frac{V_{c}}{V_{H}-V_{c}} \ln \left(\frac{V_{c}}{V_{H}+V_{c}}\right)\right\}
$$

But, what about $T_{H}{ }^{\prime}$

$$
\begin{aligned}
C m_{H} T_{H}^{\prime} & =C m_{H} T_{H}-L_{t} m_{c} \\
\quad \rightarrow T_{H}^{\prime} & =T_{H}-\frac{L_{f} m_{c}}{C m_{H}}=(273+60)-\frac{335 \cdot 20}{4,19 \cdot 300}=328 \mathrm{~K}
\end{aligned}
$$

I stop here, I am not sure the authors of the book had all these details in mind, but we have to have in mind, that we do not know how the ice melts in the water. The details are not accessible, and this is just an estimate of the total entropy changes. It is positive, and we could calculate it using the initial information given.

A thin conducting square with $A=u \quad Q_{T}=-10.0 \mu C, L=2,0 \mathrm{~m}$
we have to find E above the square at distance $z=1$ or $2 \mathrm{~cm} \ll L$, thus we use Ex. 5.8 in the book, ignore edges and realize the field is perpendicular to the square (away from the edges). For the disk in Ex. 5.8

$$
\bar{E}(z)=\frac{2 \pi \sigma}{4 \pi \epsilon_{0}}\left\{1-\frac{z}{\sqrt{R^{2}+z^{2}}}\right\} \hat{k} \quad \begin{aligned}
& \text { above the center of the } \\
& \text { disk in the } x y \text {-plane }
\end{aligned}
$$

we look at

$$
\begin{aligned}
& 1-\frac{z}{R \sqrt{1+\left(\frac{z}{R}\right)^{2}}}=1-\left(\frac{z}{R}\right) \frac{1}{\sqrt{1+\left(\frac{z}{R}\right)^{2}}}=f\left(\frac{z}{R}\right) \\
& \lim _{x \rightarrow 0} f(x)=1 \quad \rightarrow \bar{E}(\bar{z}) \simeq \frac{\nabla}{2 \epsilon_{0}} \hat{k} \quad \text { if } z \ll L
\end{aligned}
$$

for the square in the $x y$-plane. It is a conductor, the charge is distributed on both sides

$$
\rightarrow \quad \nabla=\frac{Q_{T}}{2 L^{2}}
$$

as $\sigma<0$

In next chapter we see this for an infinite conducting plate with surface charge

For $z>0$:

$$
\bar{E}=-\frac{|\sigma|}{2 \epsilon_{0}} \hat{k}=-\frac{\left|\Phi_{T}\right|}{2 \epsilon_{0} L^{2}} \hat{k}
$$

b)

$$
\bar{F}=-e \frac{\nabla}{2 \epsilon_{0}} \hat{k}=\left|e Q_{T}\right| \frac{\hat{k}}{2 \epsilon_{0} L^{2}} \quad \begin{aligned}
& \text { repulsive for on the electron } \\
& z>0
\end{aligned}
$$

c) Same answers as before as the electric field does not change with distance
d) The work by the force, when -e is moved from $Z_{1} \rightarrow Z_{2}$
it is positive due to the repulsive force

$11-05-96$

Infinite line charges, find the field at P_{1} and P_{2}

$$
P_{2}: \bar{E}=\frac{\lambda}{2 \pi \epsilon_{0}}\left[\frac{1}{2 a}+\frac{1}{a}\right] \hat{i}=\frac{\lambda \hat{i}}{2 \pi \epsilon_{0}} \frac{3}{2 a}
$$

$$
\begin{aligned}
\hat{y}_{\uparrow} \text { a }
\end{aligned} \quad \begin{aligned}
P_{1}: \bar{E} & =\frac{\lambda}{2 \pi \epsilon_{0}}\left[\frac{\sqrt{2}}{a} \cdot 2\right] \cdot \underbrace{\cos \left(\frac{\pi}{4}\right)}_{1 / \sqrt{2}} \hat{j} \\
& =\frac{\lambda}{2 \pi \epsilon_{0}} \frac{2}{a} \hat{j}=\frac{\lambda}{\pi \epsilon_{0} a} \hat{j}
\end{aligned}
$$

11-06-54 Infinite cylinder with space charge density S

$\rho=\alpha r, \alpha=\cos t$.

we use Gauß to find E inside and outside the cylinder cit can not be conducting if it has a charge distribution of this kind)

$$
\begin{aligned}
Q_{T}=2 \pi L \int_{0}^{R} r d r \cdot \alpha r & =2 \pi L \alpha \frac{R^{3}}{3} \\
& =2 \pi L \alpha R^{2} / 3
\end{aligned}
$$

surface integral, we select a concentric cylinder surface at which E must be constant due to the cylindrical symmetry
$r>R$: all the charge is within the Gauß surface
$\rightarrow L \cdot 2 \pi r E_{r}=\frac{2 \pi L \alpha R^{3}}{3 \epsilon_{0}} \rightarrow E_{r}=\frac{\alpha R^{3}}{3 \epsilon_{0} r} \rightarrow \bar{E}=\frac{\alpha R^{3}}{3 \epsilon_{0} r} \hat{r}$
$r<R=$

$$
Q_{\text {enc }}=\frac{2 \pi}{3} L \alpha r^{2}
$$

$$
E_{r}=\frac{\alpha r^{2}}{3 \epsilon_{0}} \quad \rightarrow \quad \bar{E}=\frac{\alpha r^{2}}{3 \epsilon_{0}} \hat{r}
$$

In $r=R E(r)$ is continuous, but the derivative is not due to the step in the distribution at the surface

At the surface of a spherical conductor the field is $\bar{E}=\frac{k q}{r^{2}} \hat{r}$ in equilibrium the field close to a surface of a conductor is perpendicular to it and

$$
E=\frac{\sigma}{\epsilon_{0}}
$$

Can we get these facts to be in agreement?

$$
\begin{aligned}
& q=4 \pi r^{2} \sigma \\
& \longrightarrow E=\frac{k q}{r^{2}}=\frac{\left(\frac{1}{4 \pi \epsilon_{0}}\right)}{k} \frac{\left(4 \pi r^{2} \nabla\right)}{r^{2}}=\frac{\nabla}{\epsilon_{0}}
\end{aligned}
$$

$11-07-52$

$q=5 \mathrm{mC}$
$Q=10 \mathrm{~m} C$
we need to find the electric potential $v(x, y)$

$$
V(x, y)=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{4} \frac{q_{i}}{\mid \bar{x}}-\bar{x} \left\lvert\, \quad=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{4} \frac{q_{i}}{\sqrt{\left(x_{i}-x\right)^{2}+\left(y_{i}-y\right)^{2}}}\right.
$$

$$
P_{1}: \quad V(-2,0)=\frac{q}{4 \pi \epsilon_{0}} 0,1667 \text { see Figure } \downarrow
$$

$$
=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{q}{\sqrt{(-4-x)^{2}+(0-y)^{2}}}-\frac{Q}{\sqrt{(4-x)^{2}+(0-y)^{2}}}\right\}
$$

$$
=\frac{q}{4 \pi \epsilon_{0}}\left\{\frac{1}{\sqrt{(-4-x)^{2}+y^{2}}}-\frac{z}{\sqrt{(4-x)^{2}+y^{2}}}\right]
$$

r<R : $\quad E_{r}=-\frac{\partial}{\partial r} V(r), \quad E_{r}=0$
$\rightarrow V(r)=V_{i}:$ Const.
$r>R: \quad V(r)=-\frac{\lambda}{2 \pi \epsilon_{0}} \ln (r)+V_{0}$
$V(r)$ must be continuous in $r=R$

$$
\begin{aligned}
& \rightarrow V(R)=V_{i} \rightarrow-\frac{\lambda}{2 \pi \epsilon_{0}} \ln (R)+V_{0}=V_{i} \\
& \rightarrow V_{0}=\frac{\lambda}{2 \pi \epsilon_{0}} \ln (R)+V_{i} \\
& \rightarrow \quad \begin{array}{|r}
V(r)=-\frac{\lambda}{2 \pi \epsilon_{0}} \ln \left(\frac{r}{R}\right)+V_{i} \\
\quad r>R \\
V(r)=V_{i} \\
r<R
\end{array}
\end{aligned}
$$

$$
C=4 \pi \epsilon_{0} \frac{R_{1}}{1-\frac{R_{1}}{R_{2}}} \underset{R_{2} \rightarrow \infty}{ } 4 \pi \epsilon_{0} R_{1}
$$

$-08-42$

Find the energy in a single-sphere capacitor, $\quad R=2.0 \mathrm{~m}, \quad \mathrm{~V}=10.0 \mathrm{~V}$ Spherical capacitor

$$
C=4 \pi \epsilon_{0} \frac{R_{1} R_{2}}{R_{2}-R_{1}} \text {, Check Ex. } 8.3
$$

or take the limit $\quad R_{2} \rightarrow \infty$

So, for a single sphere capacitor we have
$C=4 \pi \epsilon R_{0}$,

$$
U_{c}=\frac{1}{2} V^{2} c=\frac{1}{2} V^{2} 4 \pi \epsilon_{0} R
$$

$$
=\frac{1}{2} 10^{2} v^{2} 4 \pi \epsilon_{0} \cdot 2,0 \mathrm{~m}
$$

$$
\underbrace{}_{8,85} \cdot 10^{-12} \frac{C^{2}}{N m^{2}}
$$

$$
=1,1 \cdot 10^{-8} \mathrm{~J}
$$

$11-09-60$
12 V and $100 \mathrm{Ah}, 80 \mathrm{~W}$ Lights
so W at $12 \mathrm{~V} \rightarrow P=I \cdot \mathrm{~V} \rightarrow I=\frac{P}{V}=\frac{80}{12}=6,667 \mathrm{~A}$

$$
\rightarrow T=\frac{100 A h}{6.667}=15 \mathrm{~h}
$$

$11-11-52$ Hall sensor $V_{H}=1,5 \mu V$ Find B that gives $V_{H}=2 \mu v$ for $1=1.7 \mathrm{~A}$ to the Hall sensor $\left\{\begin{aligned} & V_{H}=\frac{I B l}{n e A}=I B\left(\frac{l}{n e A}\right) \longleftrightarrow\left(\frac{l}{u e A}\right)=\frac{V_{H}}{I B}=\frac{1.5 \mu \mathrm{~V}}{2 A \cdot 1 T} \\ &=0.75 \frac{\mu \mathrm{~V}}{A T} \\ & \rightarrow B=\frac{V_{H}}{I\left(\frac{l}{n e A}\right)}=\frac{2}{1,7 \cdot 0.75} T=1,57 T \end{aligned}\right.$	Find a such that $B(P)=0$ Magnetic field due to the arch is $B(P)=\frac{\mu_{0} I}{4 \pi R} \cdot \pi=\frac{\mu_{0} I}{4 R}$ into the page burfum I up the page to counteract this $B=\frac{\mu_{0} I}{2 \pi a}$ so we need $\frac{\mu_{0} I}{4 R}=\frac{\mu_{0} I}{2 \pi a} \rightarrow 4 R=2 \pi a \rightarrow a=\frac{2 R}{\pi}$
$\begin{aligned} & d=0,25 \mathrm{~m} \\ & I=50 \mathrm{~A} \\ & \quad \frac{F}{l}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi d} \end{aligned}$ a) Attraction for parallel currents (check energy density..) $\frac{F}{l}=\frac{4 \pi \cdot 10^{-7}(50)^{2}}{2 \cdot \pi \cdot 0,25}=2 \cdot 10^{-3} \mathrm{~N} / \mathrm{m}$ b) Attraction C) For antiparallel currents there is a repulsion between the currents cbest understood from the energy density of the system, and how it changes as d is varied..)	$11-12-48$ Find B caused by the homogeneous currents a) I, $\quad r<r_{1}$ b) II, $\quad r_{1}<r<r_{2}$ c) III, $r_{2}<r<r_{3}$ $\oint \bar{B} \cdot d \bar{l}=\mu_{0} I_{e v c}$ (I): $I_{\text {euc }}(r)=I\left(\frac{r}{r_{1}}\right)^{2}$ $\rightarrow 2 \pi r B=\mu_{0} I\left(\frac{r}{r_{1}}\right)^{2} \rightarrow B=\frac{\mu_{0} I}{2 \pi r_{1}^{2}} r$ and $\bar{B}=-\frac{\mu_{0} I}{2 \pi r_{1}^{2}} r \hat{\Theta}$

(II): $2 \pi r B=\mu_{0} I \rightarrow \bar{B}=-\frac{\mu_{0} I}{2 \pi r} \hat{\varphi}$
(V): $\bar{B}=0$ as $I_{\text {enc }}=0$
(III): $\bar{B}=\bar{B}_{1}+\overline{B_{2}}$

$$
\bar{B}_{1}=-\frac{\mu_{0} I}{2 \pi r} \hat{\varphi}
$$

For \bar{B}_{2} :

$$
\begin{aligned}
& 2 \pi r B_{2}=\mu_{0} I_{\text {enc }}, \quad I_{\text {enc }}=I \frac{\left(r^{2}-r_{2}^{2}\right)}{\left(r_{3}^{2}-r_{2}^{2}\right)} \\
\rightarrow & B_{2}=\frac{\mu_{0} I}{2 \pi r} \frac{\left(r^{2}-r_{2}^{2}\right)}{\left(r_{3}^{2}-r_{2}^{2}\right)}
\end{aligned}
$$

and the total in III)

$$
\bar{B}=\frac{\mu_{0} I}{2 \pi r}\left\{-1+\frac{\left(r^{2}-r_{2}^{2}\right)}{\left(r_{3}^{2}-r_{2}^{2}\right)}\right\} \hat{\varphi} \quad, \quad \begin{aligned}
& \text { and } \\
& B\left(r_{3}\right)=0
\end{aligned}
$$

