11-05-86

A thin conducting square with $A=u \quad Q_{T}=-10.0 \mu C, L=2,0 \mathrm{~m}$
we have to find E above the square at distance $z=1$ or $2 \mathrm{~cm} \ll L$, thus we use Ex. 5.8 in the book, ignore edges and realize the field is perpendicular to the square (away from the edges). For the disk in Ex. 5.8

$$
\bar{E}(z)=\frac{2 \pi \sigma}{4 \pi \epsilon_{0}}\left\{1-\frac{z}{\sqrt{R^{2}+z^{2}}}\right\} \hat{k} \quad \begin{aligned}
& \text { above the center of the } \\
& \text { disk in the } x y \text {-plane }
\end{aligned}
$$

we look at

$$
\begin{aligned}
& 1-\frac{z}{R \sqrt{1+\left(\frac{z}{R}\right)^{2}}}=1-\left(\frac{z}{R}\right) \frac{1}{\sqrt{1+\left(\frac{z}{R}\right)^{2}}}=f\left(\frac{z}{R}\right) \\
& \lim _{x \rightarrow 0} f(x)=1 \quad \rightarrow \bar{E}(\bar{z}) \simeq \frac{\nabla}{2 \epsilon_{0}} \hat{k} \quad \text { if } z \ll L
\end{aligned}
$$

for the square in the $x y$-plane. It is a conductor, the charge is distributed on both sides

$$
\rightarrow \quad \nabla=\frac{Q_{T}}{2 L^{2}}
$$

$11-05-96$

Infinite line charges, find the field at P_{1} and P_{2}

$$
P_{2}: \bar{E}=\frac{\lambda}{2 \pi \epsilon_{0}}\left[\frac{1}{2 a}+\frac{1}{a}\right] \hat{i}=\frac{\lambda \hat{i}}{2 \pi \epsilon_{0}} \frac{3}{2 a}
$$

$$
\begin{aligned}
P_{1}: \bar{E} & =\frac{\lambda}{2 \pi \epsilon_{0}}\left[\frac{\sqrt{2}}{a} \cdot 2\right] \cdot \underbrace{\operatorname{Cos}\left(\frac{\pi}{4}\right)}_{0} \hat{j} \\
& =\frac{\lambda}{2 \pi \epsilon_{0}} \frac{2}{a} \hat{j}=\frac{\lambda}{\pi \epsilon_{0} a} \hat{j}
\end{aligned}
$$

11-06-54 Infinite cylinder with space charge density S

we use Gauß to find E inside and outside the cylinder cit can not be conducting if it has a charge distribution of this kind)

$$
\rho=\alpha r, \alpha=\text { cost. }
$$

$$
Q_{T}=2 \pi L \int_{0}^{R} r d r \cdot \alpha r=2 \pi L \alpha \frac{R^{3}}{3}
$$

as $\sigma<0$

In next chapter we see this for an infinite conducting plate with surface charge

For $z>0$:

$$
\bar{E}=-\frac{|\sigma|}{2 \epsilon_{0}} \hat{k}=-\frac{\left|\Phi_{T}\right|}{2 \epsilon_{0} L^{2}} \hat{k}
$$

b)

$$
\bar{F}=-e \frac{\nabla}{2 \epsilon_{0}} \hat{k}=\left|e Q_{T}\right| \frac{\hat{k}}{2 \epsilon_{0} L^{2}} \quad \begin{aligned}
& \text { repulsive for on the electron } \\
& z>0
\end{aligned}
$$

c) Same answers as before as the electric field does not change with distance
d) The work by the force, when -e is moved from $Z_{1} \rightarrow Z_{2}$
it is positive due to the repulsive force

$$
\oint \bar{E} \cdot d \bar{A}=\frac{Q_{\text {enc }}}{\epsilon_{0}}
$$

surface integral, we select a concentric cylinder surface at which E must be constant due to the cylindrical symmetry
$r>R$: all the charge is within the Gauß surface

$$
\rightarrow L \cdot 2 \pi r E_{r}=\frac{2 \pi L \alpha R^{3}}{3 \epsilon_{0}} \rightarrow E_{r}=\frac{\alpha R^{3}}{3 \epsilon_{0} r} \rightarrow \bar{E}=\frac{\alpha R^{3}}{3 \epsilon_{0} r} \hat{r}
$$

$r<R=$

$$
Q_{\text {enc }}=\frac{2 \pi}{3} L \alpha r^{2}
$$

$$
E_{r}=\frac{\alpha r^{2}}{3 \epsilon_{0}} \quad-\quad \bar{E}=\frac{\alpha r^{2}}{3 \epsilon_{0}} \hat{r}
$$

In $r=R E(r)$ is continuous, but the derivative is not due to the step in the distribution at the surface

At the surface of a spherical conductor the field is $\bar{E}=\frac{k q}{r^{2}} \hat{r}$ In equilibrium the field close to a surface of a conductor is perpendicular to it and

$$
E=\frac{\sigma}{\epsilon_{0}}
$$

Can we get these facts to be in agreement?

$$
\begin{aligned}
& q=4 \pi r^{2} \sigma \\
& \longrightarrow E=\frac{k q}{r^{2}}=\frac{\left(\frac{1}{4 \pi \epsilon_{0}}\right)}{k} \frac{\left(4 \pi r^{2} \nabla\right)}{r^{2}}=\frac{\nabla}{\epsilon_{0}}
\end{aligned}
$$

