1-06-44

(m): $-m g \sin \alpha+T=a m$
(M): $\quad M g \operatorname{Sin} \beta-T=a M$
we can add the two equations to eliminate T :

$$
-m g \sin \alpha+M g \sin \beta=a m+a M \quad \underline{a}=2,34 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\rightarrow a=\frac{g\{M \sin \beta-m \sin \alpha\}}{m+M} \quad \begin{aligned}
& \text { notice how the direction } \\
& \text { of the acceleration depends }
\end{aligned}
$$ on m, M, and the angles

To find T we obviously can then subtract the equations

$$
\{m-M\} \quad \text { symbolically }
$$

1-06-56

$$
\begin{aligned}
& a=0 \quad \rightarrow \bar{F}_{s}+\bar{F}=0 \\
& \text { i.e. } \operatorname{Mg} \sin \theta=\mu_{s} \operatorname{Mg} \operatorname{Cos} \theta \\
& \rightarrow \operatorname{Sin} \theta=\mu_{s} \operatorname{Cos} \theta \rightarrow \tan \theta=\mu_{s} \\
& \rightarrow \theta \rightarrow \arctan \mu_{s}
\end{aligned}
$$

$$
\begin{aligned}
& -m g \operatorname{Sin} \alpha-M g \operatorname{Sin} \beta+2 T=a\{m-M\} \\
\rightarrow & -g\{m \sin \alpha+M \sin \beta\}+2 T=\frac{g\{M \sin \beta-m \sin \alpha](m-M)}{m+M} \\
\rightarrow & T=\frac{g}{2}\{m \sin \alpha+M \sin \beta\}+\frac{g}{2}\{M \sin \beta-m \sin \alpha\} \frac{m-M}{m+M}
\end{aligned}
$$

$$
T \text { for } a=0
$$

This term vanishes if $a=0$
or we could have used

$$
=82.4 \mathrm{~N}
$$

$a \rightarrow m$:

$$
\begin{aligned}
& :-\underline{-m} \sin \alpha+T=\frac{m g}{m+M}\{M \sin \beta-m \sin \alpha\} \\
& \rightarrow T=m g \sin \alpha+\frac{m g}{m+M}\{M \sin \beta-m \sin \alpha\}
\end{aligned}
$$

1-06-74
The Bohr model

$$
\begin{aligned}
R=5,28 \cdot 10^{-11} \mathrm{~m} \text { for } e & F_{c} & =m_{e} \frac{U^{2}}{R} \\
U=2,18 \cdot 10^{6} \mathrm{~m} / \mathrm{s} & & =\frac{9,11 \cdot 10^{-31}\left(2,18 \cdot 10^{6}\right)^{2}}{5,28 \cdot 10^{-11}} \\
m_{e}=9,11 \cdot 10^{-31} \mathrm{~kg} & & =\frac{8,2 \cdot 10^{-8} \mathrm{~N}}{}
\end{aligned}
$$

Corresponding acceleration

$$
\begin{array}{r}
a_{c}=\frac{v^{2}}{R}=a \cdot 10^{22} \mathrm{~m} / \mathrm{s}^{2}!, \quad b u t \ldots \\
L=0 \operatorname{cn} Q M
\end{array}
$$

1-06-88
Air resistance on a skydiver $f=-b v^{2}, v_{T}=60 \mathrm{~m} / \mathrm{s}$

$$
M=50 \mathrm{~kg}, \text { fond } b
$$

Equation of motion

$$
\begin{aligned}
\underbrace{m \frac{d v}{d t}=}_{=0} \rightarrow & M g-b v^{2} \\
\rightarrow b & =b v_{T}^{2} \\
\rightarrow & \frac{M g}{v_{T}^{2}}=\frac{50 \mathrm{~kg} \cdot 9,81 \mathrm{~m} / \mathrm{s}^{2}}{(60)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}} \\
& =0,136 \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

