$1-03-44$ Linear motion: $v(0)=0, \quad a=30 \mathrm{~m} / \mathrm{s}^{2}$ Coustant $x(0)=0$ Find $x(t)$ at $t=5 \mathrm{~s}$ a Constant $\begin{aligned} & v(t)-\underbrace{v(0)}_{=0}=\int_{0}^{t} a d t^{\prime} \rightarrow v(t)-a t \underbrace{\int_{v_{0}}^{i n t e g r a t e}}_{=0} d v^{\prime}=\int_{0}^{t} a\left(t^{\prime}\right) d t^{\prime} \\ & x(t)-\underbrace{x(0)}_{0}=\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime}=a \int_{0}^{t} t^{\prime} d t^{\prime}=a \frac{t^{2}}{2} \\ & \rightarrow x(t)=\frac{1}{2} a t^{2} \rightarrow x(5)=\frac{30}{2} \frac{\mathrm{~m}}{s^{2}} 25 \mathrm{~s}^{2}=375 \mathrm{~m} \end{aligned}$	1-03-46 a) Sketch the corresponding $v(t)$ graph b) Max values for v(t) occur at $t_{a}, t_{d}, t_{i}, t_{j}$ c) when is $v(t)=0$? $t_{c}, t_{e}, t_{g}, t_{l}$ d) $v(t)<0$ for t_{b}, t_{f}, t_{a}
$\begin{gathered} x(t)=v_{0} t-\frac{1}{2} g t^{2} \\ \text { parabola in } t \end{gathered}$ During the trip of the ball we will hvave 0 twice twice or $\begin{array}{r} \rightarrow \frac{g}{2} t^{2}-V_{0} t+h=0 \\ t^{2}-\frac{2 v_{0}}{g} t+\frac{2 h}{g}=0 \quad \text { which has twc } \end{array}$	$\begin{aligned} & \text { The roots are } \left.\begin{array}{rl} t & =\frac{2 v_{0}}{2 g} \pm \frac{1}{2} \sqrt{\left(\frac{2 v_{0}}{g}\right)^{2}-4 \frac{2 h}{g}} \\ & =\frac{v_{0}}{g} \pm \sqrt{\left(\frac{v_{0}}{9}\right)^{2}-\frac{2 h}{g}} \\ \rightarrow \Delta t & =2 \sqrt{\left(\frac{v_{0}}{9}\right)^{2}-\frac{2 h}{9}} \\ & =2 \sqrt{\left(\frac{15}{9,81}\right)^{2} s^{2}-\frac{2.7}{9,81} s^{2}} \end{array}\right)=1,91 s \end{aligned}$

1-04-44
Max throw range of a boy is 50 m , assume always the same initial speed and find the max height

$$
\begin{aligned}
& R=\frac{v_{0}^{2} \sin \left(2 \theta_{0}\right)}{g} \quad \begin{array}{l}
\max R \text { is for } \theta_{0}=45 \text { as then } \\
\sin \left(2 \theta_{0}\right) \text { takes a max value }
\end{array} \\
& \quad \rightarrow v_{0}^{2}=g R
\end{aligned}
$$

Throw straight up

$$
h=v_{0} t-\frac{1}{2} g t^{2}=\sqrt{g R} t-\frac{9}{2} t^{2}
$$

Max height when

$$
\frac{d h}{d t}=0 \quad \bigsqcup_{g R}-g t_{m}=0
$$

$$
\begin{aligned}
& \rightarrow t_{m}=\frac{\sqrt{g R}}{g}=\sqrt{\frac{R}{g}} \\
& \begin{aligned}
h_{m}=h\left(t_{m}\right) & =\sqrt{g R} \sqrt{\frac{R}{g}}-\frac{g}{2} \frac{R}{g} \\
& =R-\frac{R}{2}=\frac{R}{2}=25 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

Think, no dirresistance, the motion is symmetric in x. The angle is 45 degrees is the answer $R / 2$ then not realistic?

