I-01-50

Check which equations for volume v and area A are dimensionally consistent
a) $V=\pi r^{2} h, \quad[V]=L^{2} \cdot L=L^{3}, O K$
b) $A=2 \pi r^{2}+2 \pi r h, \quad[A]=L^{2}+L \cdot L=L^{2}, O K$
c) $V=0,5 b h$, if $[b]=L \rightarrow[V]=L \cdot L=L^{2}$, not $O K$
d) $V=\pi d^{2},[V]=L^{2}$, not ok
e) $V=\pi d^{3} / 6, \quad[V]=L^{3}, \quad O K$

1-01-53

$$
[s]=L,[t]=T, \quad v=\frac{d s}{d t}, \quad a=\frac{d v}{d t}
$$

$->$
a) $[v]=\frac{L}{T}$
b) $[a]=\frac{L}{T} \cdot \frac{1}{T}=\frac{L}{T^{2}}$
c) $\left[\int v d t\right]=\frac{L}{T} T=L$
d) $\left[\int a d t\right]=\frac{L}{T^{2}} \cdot T=\frac{L}{T}$
e) $\left[\frac{d a}{d t}\right]=\frac{L}{T^{2}} \cdot \frac{1}{T}=\frac{L}{T^{3}}$
f) $E_{k l u}=\frac{1}{2} m\left(\frac{d v}{d t}\right)^{2} \rightarrow\left[E_{k L u}\right]=M \frac{L^{2}}{T^{2}}$
g) $E_{p o t}=\frac{1}{2} m(\omega x)^{2} \rightarrow\left[E_{p o t}\right]=M \frac{1}{T^{2}} L^{2}, a s[\omega]=\frac{1}{T}$ so the different forms of energy we will see later all have the same dimension

1-01-64

Estimate the mass of a virus. Lets take $C-19$, it has close to spherical shape
in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224694/we see that the diameter of the
$C-19$ virus is approximately $100 \mathrm{~nm}, \quad d=100 \mathrm{~nm}=100 \cdot 10^{-9} \mathrm{~m}=10^{-7} \mathrm{~m}$

$$
\begin{aligned}
V=\frac{4 \pi}{3} r^{3}=\frac{4 \pi}{3}\left(\frac{d}{2}\right)^{3}=\frac{4 \pi}{3.8} d^{3} & \approx 0.52 \cdot 10^{-21} \mathrm{~m}^{3} \\
& \approx 0.5 \cdot 10^{6} \mathrm{~nm}^{3}
\end{aligned}
$$

we estimate the virus to have density close to water

$$
\begin{aligned}
\rho_{H_{2} \mathrm{O}}=1000 \mathrm{~kg} / \mathrm{m}^{3} \quad m=\mathrm{gV} & \simeq 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 0,5 \cdot 10^{-21} \mathrm{~m}^{3} \\
& \simeq 0,5 \cdot 10^{-18} \mathrm{~kg}=0,5 \mathrm{Fg}
\end{aligned}
$$

So, we estimate the mass of a $C-19$ to be 0.5 fg , half a femtogram.
C, N, O, all have similar mass, and H is in water and in the virus.
For fun there is a publication estimating the total mass of all $C-19$ viruses during the pandemic https://www.pnas.org/dov10.1073/pnas.2024815118

上e2-70
a) If $\bar{A} \times \bar{F}=\bar{B} \times \bar{F}$ is then $\bar{A}=\bar{B}$?

Remember that for two vectors \bar{G} and \bar{H} parallel or antiparallel means that $\bar{G} \times \bar{H}=0, \bar{H} \times \bar{G}=0$
So, we select \bar{D} parallel to F then

$$
(\bar{A}+\bar{D}) \times \bar{F}=\bar{A} \times \bar{F} \text {, but } \bar{A}+\bar{D} \neq \bar{A} \text { generally }
$$

b)
what about $\bar{A} \cdot \bar{F}=\bar{B} \cdot \bar{F}$
is then
$\bar{A}=\bar{B}$?

Now we select \bar{D} that is perpendicular to $\bar{F} \rightarrow \quad \bar{D} \cdot \bar{F}=0$

$$
(\bar{A}+\bar{D}) \cdot \bar{F}=\bar{A} \cdot \bar{F} \text {, but } \bar{A}+\bar{D} \neq \bar{A} \text { generally }
$$

c)

If $F \bar{A}=\bar{B} F$ is then $\bar{A}=\bar{B}$
F is a scalar $\rightarrow \bar{B} F=F \bar{B}$
$\rightarrow F(\bar{A}-\bar{B})=0$, if $\bar{F} \neq 0$ then $\bar{A}=\bar{B}$

