1

Defining the "system" in Newtons third law

of the forces (except for \vec{f} , because it is too small to drawn to scale). System 1 is appropriate for this example, because it asks for the acceleration of the entire group of objects. Only \vec{F}_{floor} and \vec{f} are external forces acting on System 1 along the line of motion. All other forces either cancel or act on the outside world. System 2 is chosen for the next example so that \vec{F}_{prof} is an external force and enters into Newton's second law. The free-body diagrams, which serve as the basis for Newton's second law, vary with the system chosen.

Mass of professor

Mass of chart

Mass of chart

Mass of equipment

Me = 7 kg

Friction force

Force of her foot on the floor

Fift = 150 N

what is the acceleration of "system 1", (P + C + E)?

The only external force:

$$\overline{F}_{net} = \overline{F}_{floor} - \overline{f}$$

$$\overline{a} = \frac{\overline{F_{\text{ret}}}}{M_{T}} = \frac{\overline{F_{\text{cor}}} - \overline{f}}{M_{p} + M_{c} + M_{e}} = \frac{(150 - 24)^{N}}{84 \text{ Kg}}$$

~ 1,5 %2

The force on the chart (Ex. 5.11)

4

Now the relevant system is "system 2"

Fret =
$$F_P - f$$
 σ "2"

$$-> F_P = F_{\text{net}} + f$$
, $F_{\text{net}} = (M_C + M_e) \alpha$

$$-> F_P = (M_C + M_e) \alpha + f$$

$$\sim 29N + 24N = 53N$$

She pushes with much larger force on the floor, than the chart, the difference goes into her own acceleration!

weight and normal force (pyngd og normalkraftur)

openstax

Free-body diagrams

Figure 5.22 Since the acceleration is parallel to the slope and acting down the slope, it is most convenient to project all forces onto a coordinate system where one axis is parallel to the slope and the other is perpendicular to it (axes shown to the left of the skier). \vec{N} is perpendicular to the slope and \vec{f} is parallel to the slope, but \vec{w} has components along both axes, namely, w_y and w_x . Here, \vec{w} has a squiggly line to show that it has been replaced by these components. The force \vec{N} is equal in magnitude to w_y , so there is no acceleration perpendicular to the slope, but f is less than w_x , so there is a downslope acceleration (along the axis parallel to the slope).

7

we find the components of w along the axes of the coordinate system

$$W_{x} = -WSM6$$

$$W_{y} = -WGS6$$

$$W = 60 \text{ kg}$$

$$\times$$
: $(F_{wet})_x = W_x + f$

$$y: (F_{net})_y = W_y + N = 0$$
, no acc. along y

$$(F_{net})_{x} = -W S L n \theta + f = W \alpha_{x}$$

$$Q_{X} = \frac{-WS(N\delta + f)}{M} = -3,39 \text{ M/s}^{2}$$

Tension - togkraftur

If the mass m is not accelerated we have the condition

T is the tension in the rope, and here we have

we need to find the components of the forces along the x- and y-axes

$$= 5.0^{\circ}$$

$$\vec{\mathbf{T}}_{Rx}$$

$$\vec{\mathbf{T}}_{Rx}$$

Free-body diagram

$$\vec{\mathbf{F}}_{\text{net }x} = \mathbf{0}$$
; $\vec{\mathbf{F}}_{\text{net }y} = \mathbf{0}$

$$\left(\overline{F}_{\text{Net}}\right)_{X} = \left(\overline{T}_{R}\right)_{X} - \left(\overline{T}_{L}\right)_{X} = 0$$

$$(T_L)_X = (T_R)_X \rightarrow T_L G_S G = T_R (G_S G)$$

$$O = 2TS(N\theta - W)$$

$$- > \left(\frac{1}{2} - \frac{w}{2su\theta} \right) = \frac{wg}{2su\theta}$$

If
$$M = 70 \text{ kg}$$

$$g = 9.81 \text{ M/s}^2$$

$$d = 5^\circ$$

$$->$$
 $T = 3930 N$

view in a graph, singularity (properties of a rope)

Figure 5.28 We can create a large tension in the chain—and potentially a big mess—by pushing on it perpendicular to its length, as shown.

$$F = -k\Delta X$$

spring constant, measure of stiffness, fjaðurfasti, gormfasti experimental observation

Pseudo forces in noninertial frames Gerfikraftar í ekki-tregðukerfum

Coriolis forces -- centrifugal forces ...

