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Abstract

The properties of a one-dimensional quantum ring are investigated, in particular the
persistent current which appears when the ring is placed in an external magnetic
field. The Coulomb interaction between electrons is included within the Hartree-Fock
approximation. By applying a strong and short-lived pulse of radiation a dynamic cur-
rent, different from that of the ground state, can be induced. The current is changed
through a modification of the many-electron state of the system. The effects of asym-
metry are discussed and the possibility to induce a current on the ring in a zero

magnetic field.
Utdrattur

Eiginleikar einvids skammtahrings eru skodadir og sérstok ahersla 16g0 4 sisteeda strau-
minn sem kemur fram begar hringurinn er i ytra segulsvidi. Ahrif vixlverkunar &
kerfid eru konnud innan Hartree-Fock nalgunarinnar. Pegar érskammur geislunarpiils
verkar 4 kerfid breytist fjoleindaastand pess, og med pvi méti m4 breyta straumnum &
hringnum. Ahrifum ésamhverfu, annars vegar med pvi ad 6rva hringinn med 6samhver-
fri truflun og hins vegar med pvi ad méta hringinn med 6samhverfu bakgrunnsmaetti,

er lyst.
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CHAPTER 1

INTRODUCTION

For the past two decades low-dimensional electron systems, such as quantum dots and
rings, have been the subject of considerable interest and studied extensively. These
small structures are, amongst other methods, formed in a two-dimensional electron
gas by applying appropriate confinement, thus restricting the motion of electrons in
all three dimensions to a small area on the boundary between two semiconducting
materials [1]. Due to their small size (on the nanometer scale), these systems are
governed by quantum effects and thus, their energy spectrum is discrete. They are
in many ways similar to atoms, however, their properties can be controlled by ad-
justing their geometry, the confinement and applied magnetic field. Nanostructures
are a source of discoveries of intruiging quantum phenomena which do not appear in
atoms. They are important both in connection with potential device applications and
can function as convenient samples to probe the properties of many-electron systems
in reduced dimensions.

The quantum ring is a system of electrons confined to a circular region. When it is
placed in an external magnetic field perpendicular to the plane in which it lies, a con-
stant current flows along the ring. The possibility of circulating currents in sufficiently
small rings and cylinders was first proposed in the late 1960’s following investigations
into magnetic flux quantization in superconducters [2-5]. Two decades later the per-
sistent current in small rings made from normal metals was established [6-8] and the
effect of scattering as well as finite temperature upon it. The persistent current was
shown to be periodic in the magnetic flux threading the ring, with a period of the flux
quantum ®y = h/e [6, 7, 9] (full period oscillations), even in the presence of elastic
scattering. In fact, many of the physical properties of the one-dimensional quantum
ring are periodic in the magnetic flux, a manifestation of the Aharonov-Bohm effect

[10] as well as the one-dimensionality. The properties of rings of finite width are quasi-
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2 CHAPTER 1 INTRODUCTION

periodic in the magnetic flux.

A few years earlier, dirty metal cylinders and arrays of rings were found to ex-
hibit oscillations in the conductivity with a period of half a flux quantum ®,/2 (half
period oscillations), both in theory [11] and experiment [12-14]. For some time, the
existence of @, oscillations was debated, as it had not been observed in experiments.
In 1985, Webb et al. [15] measured full period oscillations in the magnetoresistance of
gold rings as well as weaker half period oscillations. The amplitude of the oscillations
was studied as a function of temperature by Washburn et al. [16]. Shortly afterwards
®, /2 resistance oscillations were reported for single aluminium and silver rings with @
oscillations in the former at higher magnetic fields [17]. In an experiment with arrays
of gold rings, Umbach et al. [18] showed that the ®, periodicity gradually disappeared
with an increased number of rings, but the half period oscillations persisted. Much
discussion on the origin of these two oscillation modes took place, with emphasis on
the effect of ensemble averaging, either over a distribution of random disorder [19-24],
energy, or the different number of particles on rings in arrays. Stone et al. [25] found
that the full and half period oscillations in single rings have different sensitivities to
the temperature and magnetic field. For low temperatures the full period oscillations
are dominant, but at higher temperatures the half period oscillations dominate at low
fields, giving way to weaker full period oscillations at high magnetic fields. The effects
of temperature and disorder were found by Cheung et al. [26] to exponentially reduce
the persistent current and due to averaging over an ensemble of rings containing dif-
ferent numbers of particles, the periodicity changes to ®;/2. Montambaux et al. [27]
showed that the ensemble average of the current over disorder or the number of parti-
cles leads to half period oscillations. Diffusion and increased number of channels were
found to reduce the average current. Measurements on an array of 107 copper rings
showed that the oscillations had a ®/2 periodicity [28]. In 1991 measurements on a
single gold ring found a & periodicity of the persistent current, but its magnitude was
1-2 orders of magnitude larger than that predicted by theory [29]. This discrepancy
between measurement and theory in mesoscopic rings has not yet been resolved. The
inclusion of the electron spin was shown to reduce the period and amplitude of the
persistent current. The effect depends strongly on the number of electrons N, on the
ring and leads to strong fluctuations between samples [30]. These results are a strong
indication that the two oscillation modes are caused by different mechanisms. The half
period oscillations originate in mesoscopic effects such as disorder, which eliminate the

full period oscillations caused by the geometry of the quantum ring.



Experimental results for mesoscopic quantum rings made in GaAs/AlGaAs semi-
conductor heterostructures were reported by Timp et al. [31] in 1987. The magnetore-
sistance oscillated with a period ®,. Since then, several experiments on semiconductor
quantum rings were conducted [32—44] and in 2000 the nanoscale was reached by Lorke
et al. [45].

Since the early 1990’s, research on quantum rings has expanded rapidly. The work
has been varied, as an example one can specify studies of optical properties [46-48],
the effect of impurities [49-53|, current magnification in open rings [54, 55|, and mag-
netization and its relation to the persistent current [56, 57]. The effect of the electron-
electron interactions has been of particular interest and considered a good candidate
to explain the large discrepancy between theory and experiments on mesoscopic rings.
A controversy exists, the Coulomb interaction is seen to both enhance and suppress
the persistent current and to have no effect at all [51-53, 58-62|. The effect of the
Coulomb interaction on the periodicity of the persistent current and energy spectrum
of the quantum ring has also been studied extensively [63-66], and shown to lead to
oscillations of period ®y/N, where N, is the number of electrons.

Over the past few years an interest in time-dependent or radiation induced phe-
nomena in various mesoscopic electron systems has emerged [67-82|. Very recently,
Luo et al. [80] reported on the generation of THz pulses with field amplitudes up to
several MV /cm, allowing for nonlinear THz spectroscopy which was used to study
Rabi oscillations in GaAs/AlGaAs quantum wells. It is likely that more experimental
studies of nonlinear excitations of nanostructures will follow, and in the future open
up a new and exciting field.

The main topic of this thesis is the effects of a nonlinear radiation pulse in the
THz frequency range upon the persistent current of a semiconductor quantum ring
on the nanometer scale. In Chapter 2 the ground state of the ring will be described,
first when the Coulomb interaction between electrons and their spin is neglected, and
following that with interaction and spin included within the Hartree-Fock approxi-
mation. The ground state persistent current is then discussed and compared for the
two cases. Chapter 3 deals with the effects of a time-dependent perturbation on the
persistent current and electron density, and Chapter 4 investigates the possibilities of

generating a steady current at a zero magnetic field.






CHAPTER 2

(GROUND STATE PROPERTIES

The quantum ring is a system that displays many intriguing properties of which the
persistent current will be central to this thesis. Despite its apparent simplicity, the
many-electron Schrodinger equation of the one-dimensional ring is complicated and
its analytic solutions unknown. Furthermore, an accurate description of the system
is complicated due to the strength and behaviour of the Coulomb interaction in one
dimension.

In this chapter the ground state properties of the one-dimensional quantum ring
will be investigated, starting from a simple single-electron model and working our way
towards a more accurate but complex model of the system. First the analytic solutions
of the Schrodinger equation of the ring, neglecting interactions between electrons as
well as their spin, will be derived. The density matrix is then introduced and will be
used extensively in the formulation of a more accurate description of the system, the
many-electron Hamiltonian. The analytical solution of the many-electron Schrodinger
equation does not exist. Due to its complexity, solving it numerically is impractical and
even impossible except for very few electrons. Therefore, a method of simplification
or approximation must be used, one of which is the Hartree-Fock approximation. The
method is described as well as its practical implementation. Following that the ground
state energy spectrum of the one-dimensional interacting ring, as obtained within the
Hartree-Fock approximation, is depicted and its properties discussed. The final section
of the chapter is devoted to a special ground state property of the quantum ring, the

persistent current.
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2.1 THE NONINTERACTING QUANTUM RING

The noninteracting one-dimensional (spinless) electron gas on a ring is a system whose
equation of motion, the Scrodinger equation, has a known analytical solution. In this
section we derive the ground state properties of the ring when placed in a constant
magnetic field perpendicular to the plane in which the ring lies.

The Hamiltonian of a system of noninteracting electrons in an external magnetic
field B is a sum of single-particle Hamiltonian operators, the effective kinetic energy

of the electrons,

1 2
; Z 5 (pitcA) (2.1)
where m* denotes the effective electron mass, p; the momentum of electron 7 and A a
vector potential describing B

B=VxA. (2.2)

The state vector of the system is composed of an antisymmetrized product of single-

electron states that are solutions to the single-electron Schrodinger equation

ho |¢i) = € |i) (2.3)

where ¢; is the i-th energy eigenvalue of the Hamiltonian
hy = —— (p+eA)>. (2.4)
2m*
The electrons are confined to a ring of radius rg. Assuming that the magnetic field
is constant and perpendicular to the plane of the ring, the vector potential can be
expressed in the symmetric gauge
A:—%pr: % €o, (2.5)
where €4 is a unit vector in the in-plane angular direction and B is the magnitude of

the magnetic field, B = |B|. In polar coordinates the Hamiltonian becomes

h? 0? eBrt 0 eBr2\?
ho=—— | == +i—2— — 0 . 2.
N T [&92 LAY ( on ) (26)
Using the magnetic flux
® =B-S = Bl (2.7)

as well as the flux quantum ®q = h/e, the Hamiltonian can be simplified to the form
| o ) D>

— — + 2 —— — | — . 2.8

o2 | 962 T By 00 (@0) (28)

h():
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The time-independent Schrodinger equation of the system

ilo |9) =€ |®) (2.9)

has a known analytical solution and on imposing the boundary condition ¢(0 + 27) =
¢(0) one finds that the eigenvalues of the Hamiltonian are restricted to a discrete set of
allowed values. It also specifies the corresponding wave functions up to a multiplicative
constant which is fixed by the normalization condition. The wave functions and single-

particle spectrum of the one-dimensional ring are thus found to be

e—im@
p— m 6 p— 5
(xlm) = 6,(0) = 5
m=0,£1,£2,... (2.10)
i ( )?
em=———(m—m ,
2m*r(2] ®

where mg = ®/®,. The wave functions are eigenfunctions of the z component of the

angular momentum L. whose eigenvalues are determined by the quantum number m
L. |m) = —mh|m) . (2.11)

Therefore, m also indicates the z component of the angular momentum of the state.

The set of wave functions {|m)} forms a complete orthonormal basis
(Lm) = 6im, Y m) (m| =1, (2.12)

and can therefore be used as a basis in which more complex wave functions are ex-
panded, provided they obey the same boundary conditions.

As shown in Figure 2.1 the energy spectrum of the ring consists of a set of trans-
lated parabolas and is periodic in the magnetic flux. This periodicity of the spectrum
is related to the Aharonov-Bohm effect [10] (for a good review see [83]). At zero
magnetic field there exists a left/right symmetry in the system, there is no preferred
direction of motion. The magnetic field breaks this symmetry and lifts the degenera-
cies of the spectrum. The negative angular momentum states (m > 0) are lowered
in energy with increasing magnetic flux since in this direction of motion the orbital
magnetic moment of the electrons is aligned with the direction of the field. The ground
state moves to higher angular momentum states as the flux grows in order to minimize
the effective kinetic energy of the electrons. However, there are values of the flux at
which the magnetic field does not manage to break the left /right symmetry and the

spectrum becomes degenerate again, but in different pairs than those at B = 0.



8 CHAPTER 2 GROUND STATE PROPERTIES

12

Figure 2.1: Single-particle energy spectrum ¢, of the one-dimensional
ring as a function of the magnetic flux.

2.2 THE DENSITY MATRIX

To fully specify the state of a many-electron system its state vector |¥), along with
information about the occupation of single-electron states, must be known. The rele-
vant physical properties are extracted by the expectation value of the representative

operator

(A) = (V| A|D). (2.13)

There is another way to specify the state of the system which incorporates information
about the occupation of single-electron states, namely the density matrix. The density
matrix formalism has a clear advantage when inspecting a system subject to a nonadi-
abatic perturbation. Under these conditions the system is not in equilibrium at each
time instant and the concepts of single-electron energy levels and their occupation is
ill-defined in the sense that the stationary Schrodinger equation has no meaning at
each time step. The time evolution of this information is included in the density ma-
trix at all times. Furthermore, the representation of the equations of motion in terms
of the density matrix often serves to simplify them.

In equilibrium we assume that the many-body state of a system can be described
by a set of single-particle states which are solutions to the stationary Schrodinger

equation

a Vi) = €i|vi) (2-14)
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where H is the Hamiltonian of the system. The probability that eigenstate ¢ of the

system is occupied at temperature 7" is given by the Fermi distribution

1

- 2.15
Tt on (o) (215)

fi=flei—p)

where kg is the Boltzmann constant and p the chemical potential which is fixed by

the number of electrons

> fi=N.. (2.16)
=1
The density operator of the system is defined as
p=>_ fili) (Wil (2.17)

and by expanding the eigenstates of the Hamiltonian in the complete orthonormal
basis (2.10)

) = cim Im) (2.18)

m

the elements of the ground state density matrix with respect to this basis become

pim = (L] pm)

_ Zf > i (1 n) (n'|m) (2.19)

n,n’

*
= E fz Cim Cils
i

where in the second step we have used the orthonormality of the basis.
The density matrix fully characterizes the quantum state of a system. The expec-

tation value of an operator A is given by

<A> = Te{pA} (2.20)
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so e.g. the electron density is found by

nlr) = (0 — 1)) = Tr{poE — 1)} = 32 (1150 — 1) |1)
=3 [ @il w6 -0 )

=37 @ (1]l (50— |1)
X o

(2.21)
_ Z/dr’é(r' — 1) (1| plm) (mt) ('] 1)

=3 [ s’ = s, )t
=D P (1) i(r).

Furthermore the density matrix obeys the constraint
Te{p} => pu=N., (2.22)
!

where N, is the number of electrons.

2.3 THE INTERACTING MANY-ELECTRON SYSTEM

For an accurate description of a quantum system the Coulomb repulsion between elec-
trons must be included. In one-dimensional systems the Coulomb interaction exhibits
a bad singularity and its consequences are not fully known, although attempts towards
an exact description have been made, in particular with the Luttinger liquid model
[84]. To eliminate the singularity the Couloumb repulsion is here represented by a
screened interaction and the role of the screening is investigated.

Due to the Coulomb interaction, the many-electron Schrodinger equation becomes
too complex to solve directly except for few-electron systems. Therefore we will make

use of the Hartree-Fock approximation, the main topic of the following sections.

2.3.1 THE HARTREE-FOCK APPROXIMATION

The Hamiltonian of an N_-electron system in a magnetic field described by the vector
potential A is given by

N, N,
1 9 JUB — 1 < e?
H= a . i A § B- SZ Hex a § ) 2.23
— 2m* (i +eA)"+ h — + vt 2 vl Aepe, |r; — 1] ( )
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where the first term is the effective kinetic energy followed by the Zeeman term which
represents the interaction of the spin of the electrons with the external magnetic field.
External effects, e.g. background potentials and perturbations, are included in Hy
and the last term is the Coulomb repulsion between the electrons. The many-electron

wave function of the system
(x|W) = W(rys1,T989, ..., TN.SN,), (2.24)

which is a function of the spatial and spin coordinates (x; = (r;s;)) of all electrons in

the system, is a solution of the Schrodinger equation
H|U) = E|U). (2.25)

Except for systems containing very few electrons, solving the many-body Schrédinger
equation numerically is practically an impossible task even on todays powerful com-
puters. This is mainly due to the Coulomb interaction and symmetry requirements on
the wave function. Therefore some approximations have to be made. Several methods
have been devised to solve the many-body Schrédinger equation and one of those is
the Hartree-Fock method which will be presented here.

Electrons are identical particles, therefore, when interchanging the coordinates of
two electrons, ¢ and j, the physical predictions have to remain the same, i.e. the charge
density \\11\2 must not change. On interchanging a pair of electrons twice, the wave

function does not change. Therefore,
\I/(Xl,XQ,...,XZ',...,Xj,...,XNe) = j:\I/(Xl,XQ,...,Xj,...,Xi,...,XNe). (226)

The wave function of a system of electrons, and all other Fermions, is antisymmetric
with respect to particle exchange and so the minus sign applies in (2.26). The anti-
symmetry of the wave function leads to the Pauli principle, which states that only one
electron may occupy a particular state. The simplest antisymmetric wave functions
which can be used to construct an approximation of the state of a system of electrons
are Slater determinants. In the Hartree Fock method the many-electron wave function
is assumed to be represented by a single Slater determinant of a set of orthonormal
spin orbitals {x;}
1

\I’:\/N—e!det{Xi<rjsj)}
xi(ris1)  xa(ras2) ... xa(rasw.) (2.27)

1| xe(ris1)  xo(rasz) ... xo(rw.sw.)
N,! : : :

XN (r151) Xwve(ras2) ... xn.(Tn.SN,)
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It depicts a system of N, electrons occupying N, spin orbitals, without specifying in
which orbital each electron resides. An important choice lies in the set of spin orbitals
used to construct the Slater determinant as it should be the best approximation to
the ground state of the system described by H. This is achieved by varying the
spin orbitals until the total electronic energy E = (| H |¥) is at minimimum. This
procedure leads to a nonlocal single-particle eigenvalue equation, the Hartree-Fock
equation |85, 86]

Flxi) = &ilxi) (2-28)

where the Fock operator Fis given by

1 62 Ne
FXZ(X) — |:h0 + ég*MBBO'Z + Hext:| XZ(X) + Z|:

[ )

(2.29)

v — /|

The term within square brackets is the single-particle part of the Hamiltonian, where
the spin has been restricted to the z direction, with o, = +1. The two following terms
represent the Coulomb interaction between electrons in an averaged way. The first is

the direct or Hartree term
Ji(x) = /dx’ () 2 e — '] L (2.30)

It is the classical Coulomb repulsion that an electron feels due to electron ¢ and in
summing over ¢ the electrostatic energy of the electron in the presence of the charge
distribution is obtained. The second is called the exchange term and is nonlocal in
contrast to the Hartree potential. It appears because of the antisymmetry requirement
on the wave function. The exchange operator K;(x) is determined by its effect on the

wave function it operates on

Ki(x(x) = / dx X () Jr — |7 ()i (). (2.31)

When operating on a function ) (x) the exchange potential depends on the value of the
function throughout space, i.e. there doesn’t exist a potential K;(x) which is uniquely
defined at any point in space. The exchange term is nonzero only for electrons of the
same spin, making their motion correlated. In the Hartree-Fock method correlations

between electrons of opposite spin are neglected. Using (2.30) and (2.31) the Fock
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operator can be written

1, 2 e
F(x) = ho + 59 ppBo, + Hex + Treoe, ; [Ji(x) — K;(x)]
Yo (2.32)
— (x) — K.(x)] .
h + Ireo, ; [Ji(x) i(%)]

The Hartree-Fock method reduces the many-electron problem to a set of single-
particle eigenvalue equations by approximating the Coulomb interaction as an average
nonlocal potential field created by all electrons in the system. Although the problem
has been greatly simplified, the interaction terms depend on the spin orbitals which are
solutions of the Hartree-Fock equation. Before elaborating the method of solution the
choice of spin orbitals will be worked further resulting in the unrestricted Hartree-Fock
method.

2.3.2 UNRESTRICTED HARTREE-FOCK METHOD

To derive an expression of the Hartree-Fock equation convenient for numerical evalu-
ation the form of the spin orbitals must be specified. The form used here leads to the
Pople-Nesbet equations [87] in which the density matrix plays a leading role.

The spin orbitals used to construct the Slater determinant are assumed to be a

product of a spatial orbital and a spin function

o feat
Xi(rs) {wf(r)ﬁ(S) (2.33)

and the spatial orbitals are not restricted to the same form for the two spin directions.
The sets {¢§} and {wf } individually form orthonormal sets. However, members of
{4} are not necessarily orthogonal to members of {wf }. The set of spin orbitals {x;}

still forms an orthonormal set, either from spatial or spin orthogonality

(al) = [ dsa*(5)3(5) = s (2.34)
Inserting (2.33) into the Hartree-Fock equation (2.28) gives

Fij (r)a(s) = f¢i(r)a(s)

2.35
FU(r)B(s) = < (0)(s), (2.35)
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where the eigenenergies € and ef are not necessarily the same. Multiplying (2.35) by

a*(s) and B*(s) respectively and integrating over spin leads to

F(r)yf (r) = 5y (r)

(2.36)
FO(r)f (r) = fu (x),
with the spatial Fock operators given by
F*(r) = /ds a*(s)F(r,s)a(s)
(2.37)

o) = / ds B (s)F(r, $)3(s).

From now on we will only show the equations for spin «, to obtain the analogous
expressions for spin 3 simply replace a by (5 and vice versa. Performing the integration
in (2.37) it can be shown that the spatial Fock operator will include the single-electron
operator iz, direct interaction with all electrons of the system, as well as the exchange

interaction with electrons of the same spin. Thus

2 N Nf

~ A & . . 62 28
Sl L = S U E

4mege, 4mege,

where J is the spatial Coulomb operator
gt = [ ) e — e (2.39)
and K the spatial exchange operator
K3 (r)dy (r) = [ / dr'y (1) v =o' e ()| 0 (x). (2.40)

The sum over the N orbitals { in (2.38) formally includes the interaction of an

a-electron with itself. However, since
e K2y = o, (2.41)

this self-interaction is eliminated.
To solve the two eigenvalue equations (2.36) the spatial orbitals are expanded in a
complete orthonormal basis {¢,,} (here the basis of hy (2.10) is used).

[e.9]

[U5) = D G lm)- (2.42)

m=—0oQ
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Substituting the expansion (2.42) into (2.36) the Hartree-Fock equation becomes
P |6m) = €5 D ) (2.43)

and projecting it onto (¢;| gives a matrix eigenvalue equation, the Pople-Nesbet equa-
tion [87]

2 T = 2l (Dlom) = <55 (2.44)
where

= (01 7 10m) = [ dr 107 ()0, (2.45)

To find the matrix representation of the Fock matrix
we insert the Fock operator (2.38) into (2.45)

in terms of the density matrix

lm

e &
P bt o 3 [ de o) 710) = K2 (1)) )

e? Ne
+ 4drege, ; / o ¢7(r)JZﬁ(r)¢m(r)

2 N
=t g3 [ [ @@ onin)

(2.46)

— 07 () () [r = x| ()5 (x)

NJ
Z / dr dr’ ¢ (0)y)* () [r — ¥'| 7 4 (1) d ()

4dmege,

and with the expansion (2.42) we obtain

tm =Tim + 47r606 Z[Z o Z’/ dr e
[cbi‘(r)cb (r' ) v — 1|7 (1) (r) — 7 (r)5 (') [r — /| cbm(r’)cbp(r)} (2.47)

Cin Zp/drdr ()0, ()) [r =] gy (x ')¢m(r)]-

When the temperature is finite the Fermi distribution (2.15) is included in the sum
over i. Using the definition of the density matrix (2.19) for each spin direction as well

as the shorthand notation

(it |rih) = /dr dr' g7 (e)e5 (v) v = 2| (m)uan(x), (2.48)
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the Fock matrix can be written

2

e
Fr = him
tm tm + 4depe, Z

n,p

Nﬁ
Zfz ?: ZO;;[ ¢l¢n|¢m¢p> <¢l¢n|¢p¢m :|+Zfz ZO;:( ;);7 ¢l¢n|¢m¢p>]

2

e
4mege

= him + D | (@100l 6mn) = (610l 600m)] + P (D100l 0m) |

2

= him + 471‘66067 nzp [p;l;n <¢l¢n|¢m¢p> - Pgn <¢l¢n|¢p¢m> ] ’

(2.49)

where p? is the total density matrix
pl = p*+ 0’ (2.50)

2.3.3 SOLVING THE HF-EQUATIONS

The Hartree-Fock equations (2.36) are nonlinear integro-differential equations whose
solutions are the occupied single-electron states 1/1;?‘(1') and the corresponding energy
levels. By expanding the unknown orbitals in a convenient basis the equations are

converted into a nonlinear matrix eigenvalue equation
F(c)c=¢c (2.51)

where c are the expansion coefficients and ¢ a diagonal matrix containing the energy
eigenvalues. Solving (2.51) directly is a hard task, since the Fock matrix (2.49) de-
pends on the solution itself. A standard approach to solving (2.51) is in an iterative
scheme, the so-called self-consistent field method. Initially a guess for the expansion
coefficients, or equivalently the density matrix p, is used to construct the Fock matrix,
thereby transforming the problem to a linear eigenvalue equation which can be solved
by standard numerical methods. The solution is then used to construct a new estimate
for p which is used as input for the Fock matrix. This procedure is repeated until the
solution converges and self-consistency is achieved. The convergence criterion is that
the change in a chosen parameter (the density matrix, total energy, etc.) from one
iteration to the next is less than a prescribed tolerance value. In many cases, using
the solution in each step directly in the Fock matrix leads to a convergence instability.

To stabilize the convergence a common method is to only use the new solution partly,
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i.e. to mix the new solution py, with the one from the previous step
P = Tpsol + (1 —2)p" (2.52)

where z is the mixing weight (often in the range of = 0.05 — 0.1 or even smaller).

The Hartree-Fock equation is derived by using the variational principle, which
states that by varying the spin orbitals such that the change in the total energy
becomes zero, we may find the set of spin orbitals, for the Slater determinantal wave
function, which minimize the total electronic energy. The Hartree-Fock equation is
thus obtained as a condition that the energy reaches its minimum, which is an upper
bound to the true ground state energy. However, this condition is only necessary,
but not sufficient, for obtaining the ground state solution. The initial guess used to
construct the Fock matrix as well as numerical errors can have a marked effect on the
solution found by iteration. It is possible, and even quite common, that the solution
persists in a local energy minimum which represents an excited state of the system.
Normally, as an initial guess, the density matrix of the corresponding noninteracting
system is used. To “scan” the energy landscape, the initial guess is slightly modified
and the total energy of the resulting solutions are compared to determine which is
the true ground state (or at least closest to it). For varying the initial guess we start
the iterative procedure with a higher value of the Zeeman energy in order to lift the
spin (semi) degeneracy of the spectrum. After a few iterations, the Zeeman energy is
relaxed to its true value. A degenerate spectrum leads more easily to oscillations in
the convergence, i.e. to a jump between two solutions during iteration.

To solve the matrix eigenvalue equation (2.44) the two-electron integrals (2.48),
included in the interaction terms of the Fock matrix, have to be evaluated. The
interaction is represented by a screened interaction along a straight line connecting

two electrons at 6 and ¢,

= = (TO\/sin2 (6 —6)/2] + Mg) o (2.53)

The screening parameter j eliminates the singularity of the Coulomb interaction at
6 = #'. Normally, the two-electron integrals are calculated by numerical quadrature for
a fixed screening constant. However, the plane-wave basis (2.10) permits an analytical
calculation of the integrals making it possible to easily vary us even in the limit of
is — 0. The two-electron integrals are thus found to be (see Appendix A for a detailed
derivation)

2
<¢l¢n|¢m¢p> = F Qp_n_% (2/L§ + ]-) 5l—m,p—n7 l7 m,n,p = 07 il? j:2’ ceey (254)
0
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where @), (x) is the Lagrange function of the second kind [88]. The asymptotic form of
the Lagrange function is known in the vicinity of = 1% (equivalent to s — 0) and
obeys a recursion relation in the indices. Having an analytical expression for the two-
electron integrals greatly reduces the computational task of solving the Hartree-Fock

equations.

2.3.4 INTERACTING SINGLE-ELECTRON SPECTRUM

The solutions of the Hartree-Fock equation yield an approximation to the ground
state of the quantum ring. The energy eigenvalues form a single-electron spectrum
which gives information about e.g. the spin structure of the system as well as the
influence of the Coulomb interaction. First we will look at the effect of the screening
constant s upon the spectrum and then choose a value of ;s where the interaction is
of similar magnitude as the kinetic energy of the electrons to see how the strength of
the interaction affects the properties of the system. Following that the total electronic
energy is discussed. The system is modeled in a GaAs semiconductor heterostructure
at a temperature 7' = 4K with an effective electron mass m* = 0.067m, where m is
the free electron mass, and an effective g-factor g* = —0.44. The ring has a radius of
ro = 14 nm and contains up to 10 electrons.

In the case of a flat ring (no background potential), the Coulomb interaction is
rotationally invariant and is therefore unable to couple states of different angular
momentum due to the conservation of total angular momentum. Therefore, since
the basis functions used are the eigenfunctions of the angular momentum operator,
its matrix elements are diagonal. This fact can be used to derive an expression for
the energy contribution of the interaction within the Hartree-Fock approximation (see
Appendix B)

By = —2N2NP [y + Inpg +9(3)] = v(3) [(N2)? + (NF)?]

Y P > P m =+ 1)+ el > ph(m =+ ), (2:55)
which clarifies the effect of 1 upon the ground state. Although the density matrices p
and p? are implicitly dependent on s, its primary influence, when it is small, is through
the logarithmic term In ps. A very small value of the screening constant contributes a
large value to the interaction energy. Under those conditions it becomes energetically
favourable for the system to spin polarize, i.e. only the lowermost NV, levels of one spin

direction are occupied, and the In u, term disappears from (2.55). As pu, increases its
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contribution to the energy gradually diminishes as the influence of the kinetic energy
grows and at some point it becomes unnecessary for the system to spin polarize

In the region where p; causes the system to spin polarize the spectrum is very
similar to that of a noninteracting system (shown in Figure 2.1, page 8). In Figure 2.2
the spectrum of four electrons confined to the ring is shown for two small values of .
The only discernible difference between the two cases is that when i, decreases the gap
between the lowest levels of opposite spin directions, the spin split, becomes larger. As
the screening parameter becomes smaller the interaction energy grows logarithmically
and tends to infinity as u, — 0. The effect of the magnitude of i, on the occupied
levels is negligible when p is small. Therefore the physical properties of the system
are unchanged and qualitatively similar to the predictions of a noninteracting model.

In a range around p, = 0.025 the effective kinetic energy term, ho (2.4), and the
exchange term of the Hamiltonian compete for control over the system. This leads
to a single-electron spectrum which is quite different from that of a noninteracting
system. As shown in Figure 2.3 there is a difference in the spectrum depending on
whether there is an odd or an even number of electrons on the ring. For 4 electrons
the spectrum shifts between regions where the system is spin polarized, and only
electrons of the same spin are present, and regions where the system contains an equal
number of up and down spin electrons. When the system becomes spin polarized, the
difference in kinetic energy between a spin polarized state and a spin degenerate one is
not enough to balance the gain in exchange energy. Thus the properties of the system
are a result of an interplay between kinetic energy and interaction. For fewer electrons
the Coulomb interaction is the main source of influence. In this case the spectrum
is fully spin polarized and is qualitatively similar to that of a noninteracting system.
With increasing number of electrons the kinetic energy becomes the primary factor in
the behaviour of the system. Therefore, for N, > 6, the spectrum is spin degenerate
(except for the Zeeman energy) and resembles that of a noninteracting model of the
ring, in which the spin of the electrons is included. In the case of an odd number of
electrons there is always some degree of spin splitting, since the number of electrons
of opposite spin is unequal.

The total energy of the ring containing 3, 4 and 6 electrons is shown in Figure
2.4. In the case of an even large number of electrons the S = 0 state is the ground
state at all values of the magnetic flux. As the number of electrons decreases and
the importance of the Coulomb interaction increases, the S = 1 state comes down

in energy and becomes the ground state for some values of me (eventually it is the
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Figure 2.2: Single-electron energy levels e,, (in units of Ey = h%/2m*r3)
as a function of the external magnetic flux for 4 electrons on the ring.
The screening constant is pus = 1072 (left) and ps = 10~* (right). Points
and circles denote spin up (o0, = +1) and spin down (o, = —1) states
respectively. The solid line is the chemical potential.

ground state at all values of the magnetic flux). This was observed by Niemeli et al.
[63], the Coulomb interaction (or any kind of repulsive interaction) favors a spin S = 1
ground state. They suggest this is due to Hund’s rule which states that the interaction
energy is lower for a spatial wave function of lower symmetry. For the S = 0 state the
spatial part of the wave function is symmetric with respect to particle exchange and
thus it grows more in energy than the S = 1 state when interaction is included. For
an odd number of electrons a strong Coulomb interaction favors a spin S = % ground
state and with increasing number of electrons the S = % configuration becomes the

ground state.
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Figure 2.3: Single-electron energy levels e,, in units of Fy = h?/2m*r as
a function of the external magnetic flux for 2 (top left), 3 (top right), 4
(middle left), 5 (middle right), 6 (bottom left) and 10 (bottom right) in-
teracting electrons within the Hartree-Fock approximation. The screening
parameter is s = 0.025. Points and circles denote the energy of spin up
and spin down electrons respectively, the solid line is the chemical poten-
tial.
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Figure 2.4: Total electronic energy in units of Ey = h?/2m*r? as a func-

tion of the external magnetic flux for 3 (left), 4 (middle) and 6 (right)
interacting electrons within the Hartree-Fock approximation. The screen-
ing parameter is pus = 0.025. Points denote the groundstate energy and
circles denote the energy of the first excited state.

2.4 THE CURRENT ON THE RING

The energy spectrum of the one-dimensional ring is periodic in the magnetic flux. This
periodicity leads to an instrinsic property of the ring when placed in an external mag-
netic field, the persistent current. In section 3.4.1 the persistent current is discussed
and following that, in section 3.4.2, its relation to the orbital magnetic moment of the

system.

2.4.1 PERSISTENT CURRENT

The spectrum of the noninteracting one-dimensional ring is periodic in the magnetic
flux with a period of ®,3. By a gauge transformation the magnetic field can be elimi-
nated from the Hamiltonian of the system resulting in a modification of the boundary

condition such that
¢(0 + 27) = p(0)e™/ 0, (2.56)

the so called twisted boundary condition. This permits an analogy to be drawn be-
tween the quantum ring and an infinite periodic lattice in one dimension [6], where

the unit cell is the circumference of the ring L and the Bloch wave vector is

2t
k= ——. 2.57
T L9, (2.57)
This analogy leads us to an interesting phenomenon manifested in the ring, the per-
sistent current. The velocity of an electron in the [*" state is
10 Lo
u L 2% (2.58)

T hok e 0®
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and associated with that state is therefore an equilibrium current
[=——=—-_"" (2.59)

The current is proportional to the slope of the energy band and is therefore also
periodic in ®. The total current encircling the ring is a sum of the currents of each

occupied state, weighted by the occupation number
88[
[p.c. = Z f(gl) [l = - Z f(gl)a_q) (260)
1 1

Due to the monotonic increase of I; with [ and the near cancellation between pairs of
filled bands the direction of the current is determined by the highest occupied state.
The persistent current is not a transport current since no external influence is needed,
it is an equilibrium property of the ring.

The persistent current appears because the external magnetic field breaks the
left /right symmetry of the ring. At a zero magnetic field the occupation of states
with equal but opposite direction of motion, |m) and |—m), is identical and the cur-
rents associated with the states therefore cancel each other. When the ring is placed
in a magnetic field the states with negative angular momentum are lowered in en-
ergy with respect to the positive ones and their occupation consequently increases.

Therefore a net, constant current appears.

2.4.2 ORBITAL MAGNETIC MOMENT

The orbital magnetic moment of a system is defined as' [89]

1
M, = 5 /dr (r x (J(r))) - n, (2.61)
where 1 is a unit vector perpendicular to the plane of the system and (J(r)) is the
current density, averaged over the Fermi distribution (2.15). The current density can

be derived from the continuity relation by assuming a Hamiltonian of the form

2

H= ;’—m +V(r) (2.62)
and is given by
I(x) = =5 (v[r) (el + [r) (x] v), (2.63)

'In the literature this is commonly referred to as the magnetization.
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where v is the effective velocity
v_——1 ( + A) (264)
eA). .
m* P

The orbital magnetic moment of a system of noninteracting electrons on a ring can be
calculated by (2.61) (for a detailed derivation see Appendix C)

M, = i (m = M) prm.- (2.65)

The Fock operator is not of the form (2.62) due to the nonlocality of the exchange
potential. Therefore the orbital magnetic moment must be found differently. It is
given by a sum of the magnetic moments of each single-electron state, weighted by the

occupation number

M, = fi (] M, [5) - (2.66)
By expanding the spatial orbitals |¢;) in the basis (2.10),
i) = Zcim Im), (2.67)

the orbital magnetic moment can be written

M, = ZZZficzﬁlcim (1] Mo [m)

) (2.68)
=St (1 W, )
I,m

where we have used the definition of the density matrix (2.19). The magnetic moment
operator M, is given by

1 . . .
Mo = ir X]= _<xjy - y.]m)7 (269)

1e

. € Jz = 7 (H r—aH )
J = —er = ——[[—[7 r] = . (270)
h , ie
Jy ==+ (Hy —yH).
2The current is traditionally defined as j = —ent, where n is the particle density. In the one-

dimensional ring, omitting n results in the current per electron.
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The Hartree-Fock current is nonlocal due to the exchange term in the Hamiltonian and
therefore we can only evaluate its matrix elements explicitly. Using the completeness

of the basis {|m)} the magnetic moment can be written

My =25 57 pa[(t 1 ln) (0l #1p) plybm) — (nly|p) (o] 7 |m))
l,m,n,p
—(tly ) ((l H 1p) (plalm) = (]2 |p) (p H|m))| - (2.71)
= _;_; Pml [xln(anypm - yanpm) - yln(anxpm - xanpM)} .

Inserting for the matrix elements of x and y and simplifying the magnetic moment

becomes
*
Up

M, =
AF,

N-1 N
Z (pmlHl+1,m+1 - pm+1,l+1Hlm) + Z (pmNHNm - pmlHlm)] .

lim=—N m=—N

(2.72)
For the noninteracting system it can be shown that (2.71) gives the same result as
(2.65) for an infinite basis (N — oo). In practice the basis used has to be finite and
this leads to a negligible cutoff error, if the basis is large enough.

The magnetic moment will in the following be used as a convenient measure of
the persistent current on the ring, since the current is directly proportional to the it.
Using the definitions

r =roé,, j= t7jéo, (2.73)

the magnetic moment can be written

roJ ~ . roJ

MO = :i:7€r X eg = :|:76Z. (274)
Therefore the magnitude of the current is
2 h M,
j= =M, = — = (2.75)
7o m*ro 1y

and it has the same sign.

The ground state magnetic moment of the noninteracting quantum ring is shown
in Figure 2.5 for 2-6 and 10 electrons. It is a periodic function of the magnetic flux
with a period of ®,, a consequence of the periodicity of the energy spectrum. At
integer and half-integer values of the magnetic flux the magnetic field cannot break
the left /right symmetry of the system and the energy spectrum becomes degenerate.

At these points the occupation of crossing levels is equal and the current they carry is
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equal but in opposite direction. Therefore the persistent current disappears. For an
even to odd number of electrons the current shifts from paramagnetic to diamagnetic,
or opposite, since the slope of consecutive energy levels has the opposite sign.

When the screening constant p, is small the energy spectrum of the interacting
quantum ring has a large spin split and has the same appearance as that of a non-
interacting ring (see section 3.3.4). This translates directly to the persistent current.
It has the same form as the noninteracting current (Figure 2.5) apart from a differ-
ence in magnitude, being generally slightly larger. Figure 2.6 shows the ground state
magnetic moment of the interacting system (within the Hartree-Fock approximation)
for a screening constant of u, = 0.1. The 2- and 3-electron spectrum is spin split due
to the strength of interaction and as a result the magnetic moment is qualitatively
similar to its noninteracting counterpart (compare the top panels of Figures 2.5 and
2.6). However, the situation for a larger number of electrons is markedly different.
Where the energy spectrum shifts from spin-degenerate to spin-polarized, jumps ap-
pear in the magnetic moment. This has been observed by Maiti et al. [90] in an
exact diagonalization of the 1D Hubbard model, although by a different mechanism.
They fix the spin configuration of the system and investigate how the strength of the
correlation affects the system. For an even higher number of electrons (N, > 10)
the spectrum is fully spin degenerate as the system is primarily controlled by kinetic
energy term. The properties of the system can be described qualitatively by a model
of noninteracting electrons with spin. The magnetic moment is therefore similar to
that of the noninteracting system (Figure 2.5) except the current has for some values

of the magnetic flux been inverted due to the double occupancy of levels.
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Figure 2.5: Ground state orbital magnetic moment as a function of the ex-
ternal magnetic flux for 2 (top left), 3 (top right), 4 (middle left), 5 (middle
right), 6 (bottom left) and 10 (bottom right) noninteracting electrons.
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Figure 2.6: Ground state orbital magnetic moment as a function of the
external magnetic flux for 2 (top left), 3 (top right), 4 (middle left), 5
(middle right), 6 (bottom left) and 10 (bottom right) interacting electrons
within the Hartree-Fock approximation. The screening parameter is (15 =
0.025. The points and circles denote the magnetic moment of spin up and
spin down electrons respectively, the solid line is the total orbital magnetic
moment.



CHAPTER 3

TIME DEPENDENT PERTURBATION

In its ground state in a magnetic field, the one-dimensional quantum ring exhibits a
circulating current, the persistent current. The current appears because the magnetic
field breaks the left/right symmetry of the ring. The positive angular momentum
states become less likely to be occupied and as a result the ring has a finite, negative
angular momentum. In this Chapter the effect of a time-dependent perturbation on
the persistent current is investigated and an attempt is made to answer the question
as to why it changes.

When the electron gas on the ring is subject to a strong time-dependent pertur-
bation its evolution is nonadiabatic and the concepts of single-electron energy levels
and their occupation become poorly defined. Under these conditions it is convenient
to study the time evolution of the density matrix. In this chapter the time-evolution
equation of the density matrix is described and the method to solve it numerically is
outlined. Following that the external perturbation is defined after which results are
presented, the response of the orbital magnetic moment, the evolution of the electron

density as well as the change in occupation of the angular momentum states.

3.1 TIME EVOLUTION OF THE DENSITY MATRIX

At time ¢t = 0 the Hamiltonian of the system becomes time-dependent when an external

perturbation of finite duration is turned on,

H(t) = H(0) + V (t). (3.1)
The density operator obeys the equation of motion

iy = [f0.500). 32)

29
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however, the form of this equation is inconvenient for numerical evaluation. The time-

evolution operator, defined by

~

pt) =T(t) po T'(t), po=p(t =0), (33)

has a simpler equation of motion [91]

T (t) = AT ()

. o (3.4)
—iRTY(t) = T (t)H(t)

which can be discretized in time and the Crank-Nicholson scheme used for the time-

integration. A forward step in (3.4) gives

Pltrn) — T(t) ~ L (1) F (1)

~ ik
At ~ ]

= T(tey) ~ {11+—H(tn) T(t,)

and a backwards step gives

Fl(thrl)T(thrl) (3'6)
= {]1 - %ﬁ(tnﬂ)] T(tnsr) ~ T(t,).

Taking the average of (3.5) and (3.6) results in

{1 - %ﬁ(tnﬂ)} T(tnir) ~ {1 + %ﬁ(tn)} T(t,), (3.7)

or

(JANARS At
2h 2h

1+ —H(tn)] T(t,) ~ {1 - Z—f](tn_l)} T(tnr). (3.8)
In the basis of hq (2.10) the time evolution equation (3.8) becomes a matrix equation
of the form AT = B with the boundary condition 7'(0) = 1. Eq. (3.8) together
with (3.3) specifies the state of the system at any time instant and relevant physical
properties can be calculated in terms of the density matrix by (2.20). Specifically,
the magnetic moment at each timestep is given by (2.72) with H,,, = H},(t) and

Pml = pml(t)



3.2 THE EXTERNAL PERTURBATION 31

When the Coulomb interaction is included, (3.8) must be solved iteratively. The
ground state is obtained as described in section 3.3.3. When the perturbation is acting
on the system, the Hamiltonian of the previous timestep H(t,_) is known, but H(t,)
depends on the time evolution operator T(t,) through the density matrix. To obtain
H (t,) it is first approximated by using the density matrix from the last timestep and
then (3.8) is solved iteratively until self-consistency is reached, i.e. until the change in

H(t,) becomes negligible.

3.2 THE EXTERNAL PERTURBATION

The external time-dependent perturbation chosen is a short-lived radiation pulse with

a spatial distribution resembling dipole radiation
V(t) = Vo cosfe " sin(wyt) sin(wt)O(r — wit) (3.9)

where O is the Heaviside step function. The exponential factor limits the life-time of
the pulse and the sine functions, with an envelope frequency w; and a base frequency
w, ensure that the perturbation has an initial value of zero. It is important to note
that the spatial distribution of the pulse does not break the left /right symmetry of the
system. Both the angular and time-dependence of the perturbation are shown in Fig.
3.1.

3.3 DYNAMIC MAGNETIC MOMENT

First the results for the noninteracting ring will be presented followed by those of
the interacting quantum ring. The absence of a confinement potential (i.e. the one-
dimensionality) in the noninteracting one-dimensional ring causes the magnetic mo-
ment to reach a steady state value immediately after the perturbation has been turned
off, as shown in Figure 3.2. This is quite different from the response of a ring of finite-
width [67] where the magnetic moment oscillates after the excitation pulse vanishes, a
consequence of the coupling between radial and angular density oscillations. As shown
in Figure 3.3 for a one-dimensional ring containing one electron, the magnetic moment
after the perturbation has vanished is different from the ground state magnetic mo-
ment, at a finite magnetic field. It should be stressed that in the model discussed here
no means of energy dissipation is included. Therefore, by applying the perturbation,

the system is brought to an excited state in which it will remain forever. For low
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Figure 3.1: Left: The external perturbation along the ring as a function of
time. Right: Time-dependent part of the pulse for § = 0. The parameter
values are hwi = 0.658 meV, fw = 2.63 meV and I' = 2 /ps.

2 2
t[ps] tps]
Figure 3.2: Orbital magnetic moment M,(t) as a function of time for 1
electron on the ring. Left: m¢ = 0.25 (B = 1.71T). Right: m¢ = 0.7

(B = 4.7T). The strength of the perturbation is Vo = 100Ey (0.29 eV),
with the other parameters given in the caption of Figure 3.1.
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values of the magnetic field, the magnetic moment (and thus the current) increases
proportional to the perturbation strength. When B ~ 1 T a drastic nonlinear change
occurs. The magnetic moment changes sign, implying that the direction of the cur-
rent has changed, and for the remaining magnetic field values shown, the current after
excitation is in anti-phase with the equilibrium persistent current and larger in mag-
nitude. At me = 0.5 (B = 3.36 T) the magnetic moment goes to zero even after the
system has been excited. The reason for this becomes clear when looking at the energy
spectrum of the ring, shown in Figure 2.1 page 8. At integer and half-integer values of
the magnetic flux the slopes of degenerate (crossing) levels have opposite signs. Being
proportional to the slope, the currents of crossing levels are cancelled out and in effect
there can be no current in the system. It has therefore no effect to excite the ring to
a higher energy state. At these values of mg the magnetic field is not able to break
the left /right symmetry of the system and since the external perturbation is left /right
symmetric it cannot induce a net current.

The current generated by the perturbation depends strongly on the number of
electrons on the ring. As an example Figure 3.4 shows the initial and final magnetic
moment for eight electrons on the ring. The perturbation causes a decrease in the
magnitude of the persistent current and is not able to change its direction for the
range of magnetic field strengths shown here. With increasing number of electrons
more energy is needed to excite the system to a state with a very different current
from the ground state persistent current.

When the temperature is increased the ground state persistent current gradually
disappears. At a higher temperature the occupation of single-electron states is more or
less evenly distributed over a larger range of angular momentum values. Consequently
the occupation of each level is quite small and due to the cancellation between suc-
cessive bands the current disappears. Even though the temperature kills the ground
state persistent current the perturbation is able to excite a current along the ring even
at 7' = 100°C as shown in Figure (3.5).

When the interaction between electrons is included in the Hartree-Fock approxi-
mation the response of the system to a time-dependent perturbation is sensitive to spin
effects. When there are equal amounts of up and down spin electrons the evolution of
the orbital magnetic moment is similar to that of a noninteracting quantum ring, as
shown in Figure 3.6 for eight interacting electrons. The magnetic moments M/ and
M} are equal in the groundstate and because the energy spectrum is spin-degenerate,

i.e. the spatial wave functions of opposite spin direction are the same, the two spin
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Figure 3.3: Equilibrium magnetic moment M,(0) (4+) and the magnetic
moment M,(ty) (x) after the radiation pulse has vanished for one electron.
Here t; denotes the final timestep. The strength of the perturbation is
Vo = 100Ey (0.29 €V), with the other parameters given in the caption of
Figure 3.1.

BI[T]

Figure 3.4: Equilibrium magnetic moment M,(0) (+) and the magnetic
moment M,(ty) (x) after the radiation pulse has vanished for 8 electrons.
Here t; denotes the final timestep. The strength of the perturbation is
Vo = 100Ey (0.29 €V), with the other parameters given in the caption of
Figure 3.1.
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2
t[ps]

Figure 3.5: The temperature dependence of the orbital magnetic moment
M,(t) for a single electron on the ring in a magnetic flux of me = 0.25.
The strength of the perturbation is Vi = 100Eq (0.29 €V), with the other
parameters given in the caption of Figure 3.1.

densities evolve in the same manner. As in the case of noninteracting electrons the
magnetic moment reaches a constant value when the perturbation vanishes, which is
different from the ground state value.

When the ground state of the interacting system is spin split and there is an unequal
amount of up and down spin electrons, the magnetic moments of opposite spin evolve
differently. However, after the pulse has disappeared the total magnetic moment must
remain constant as there is no force in the system to sustain oscillations. There is no
confinement or modulation and no dissipation of energy. Since the magnetic moments
of opposite spin direction are unequal at the time when the pulse vanishes, they start

oscillating in anti-phase.
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0 1 2 ‘ ‘ ‘
Mo 0 1 2 3 [ps]

Figure 3.6: Left: Energy spectrum of a ring containing 4 interacting
electrons. The energy is given in units of Eg = h?/ 2m*7’8 and the screening
parameter is us = 0.025. Points and circles denote the energy of spin
up and spin down electrons respectively, the solid line is the chemical
potential. Right: Orbital magnetic moment M,(t) as a function of time
for mg = 0.25, indicated by an arrow in the left panel. The dotted line
is the magnetic moment of spin down electrons, the dash-dotted line the
magnetic moment of spin up electrons (hidden behind dotted line) and the
solid line is the total magnetic moment.

30, P = 1

0 ‘ ‘ ‘ ‘
0 1 2 -2

m, ° T 23 tpg)
Figure 3.7: Left: Energy spectrum of a ring containing 4 interacting elec-
trons. The energy is given in units of Ey = h?/2m*r3 and the screening
parameter is s = 0.025. Points and circles denote the energy of spin up
and spin down electrons respectively, the solid line is the chemical poten-
tial. Right: Orbital magnetic moment M,(t) as a function of time for
Mg = 0.02, indicated by an arrow in the left panel. The dotted line is the
magnetic moment of spin down electrons, the dash-dotted line the mag-
netic moment of spin up electrons and the solid line is the total magnetic
moment.
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3.4 COLLECTIVE OSCILLATIONS

The time evolution of the electron density in the ring is shown in Fig. 3.8 for a ring
with eight noninteracting electrons in a magnetic flux of mg = 0.21 (B = 1.41 T). The
perturbation clearly induces angular density oscillations that continue after the pulse
has vanished and travel anti-clockwise around the ring. In a zero magnetic field the
oscillations do not travel around the ring, a further indication that the perturbation
does not break the left/right symmetry of the system. The density profile follows
closely the shape of the excitation pulse (shown in Figure 3.1, page 32). However,
when the peak of the pulse is reached, collective oscillations are superimposed on the
larger oscillations caused by the pulse, and are not suppressed when it vanishes. A
closer inspection of the density matrix reveals the origin of these oscillations. When
the perturbation dies out the Hamiltonian of the system becomes time-independent.
The state of the system is a linear combination of the eigenstates of the Hamiltonian
ho. The coefficients of the expansion thus acquire a time-dependent phase factor whose
value depends on the energy of the eigenstate. Therefore, after the pulse has vanished,
the diagonal elements (the populations) of the density matrix, which describe the prob-
ability for a state to be occupied, remain constant. However, the off-diagonal elements
(the coherences), which describe the interference between the different basis states,
change with time. These changes lead directly to oscillations in the electron density.
A similar effect can be seen in a two-level (1D) quantum well. If an electron in a
quantum well is initially in a linear combination of two eigenstates of the Hamiltonian
and allowed to evolve with time, then the density oscillates back and forth between
the walls of the well. In the previous section we saw that the magnetic moment re-
mains constant after the perturbation vanishes. This is a direct consequence of the
time-independence of the diagonal elements of the density matrix.

When the interaction between electrons is included the oscillation peaks are more
pronounced due to the Coulomb interaction which forces the electrons apart. The
oscillations travel in the opposite direction, as shown in Figure 3.9. Since the ground
state of the interacting system has the angular momentum states m! = m! =0, £1,2
occupied, whereas in the model excluding interactions m = 0, &1, +2, £3, 4 are occu-
pied, it is to be expected that the time evolution under the influence of a perturbation

is different.
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Figure 3.8: Electron density as a function of angle and time for 8 noninter-
acting electrons on the ring in a magnetic flux of mg = 0.21 (B = 1.41T).
The strength of the perturbation is Vo = 100Ey (0.29 €V), with the other
parameters given in the caption of Figure 3.1.

n(et)

Figure 3.9: Electron density as a function of angle and time for 8 inter-
acting electrons on the ring (s = 0.025) in a magnetic flux of mge = 0.21
(B = 1.41T). The strength of the perturbation is Vi = 100E, (0.29 €V),
with the other parameters given in the caption of Figure 3.1.
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3.5 OCCUPATION CHANGES

By inspecting the diagonal elements of the density matrix it becomes clear that the per-
sistent current is changed through a modified occupation of the single-electron states.
After the perturbation has been turned off, the combination of angular momentum
states is different from that of the ground state and thus the persistent current is
changed. Figure 3.10 shows the occupation of the lowest lying angular momentum

states for a one-electron ring in a magnetic flux of me = 0.25 (B = 1.68 T) before

1 1 1

0.5 0.5 0.5

pmm

[ 1 HHHH Lo

95 0 5 95 0 5 95 0 5
m m m

Figure 3.10: Diagonal elements of the density matrix for a ring with one
electron in a magnetic flux of mg = 0.25 (B = 1.68 T) and different
perturbation strength, m denotes the quantum number characterizing the
basis states of hg. The ground state occupation is shown with darkgrey
bars, and to the right of them the lightgrey bars give the occupation after
excitation. a) Vo = 1 meV (0.34Ey), b) Vo = 0.1 eV (34.5Ey) and c) Vh = 1
eV (344.8Ey).

and after excitation for different strengths of the perturbation. For a weak perturba-
tion, changes in the occupation are very small and should be captured by the linear
response method. As the pulse strength increases more angular momentum m states
are involved, even those high above the Fermi level. If the number of electrons on the

ring is increased, higher strength is required for a nonlinear change in the occupation.






CHAPTER 4

THE EFFECT OF ASYMMETRY

The appearance of a persistent current in quantum rings relies on the breaking of their
left /right symmetry. In an external magnetic field the ground state of the system
moves to higher angular momentum states to minimize the effective kinetic energy.
The occupation of states with opposite but equal current is thus distorted and a net
current flows along the ring. In this chapter other means of symmetry breaking and
their effect on the persistent current of the ring are investigated. The electron spin as
well as their mutual interaction will be neglected. To model the ring containing N, = 3
electrons in a GaAs heterostructure the effective mass of the electron is m* = 0.067m
and the effective g-factor ¢* = —0.44. The radius of the ring is chosen to be ry = 14
nm and the temperature 7' = 4K.

As Figures 3.3 and 3.4 show, the symmetric external perturbation (3.9) cannot
induce a current along the ring without the breaking of left/right symmetry by the
magnetic field. The question whether a spatially asymmetric perturbation can induce
a current in the ring at a zero magnetic field naturally arises. The perturbation has

the same time-dependence as (3.9)
Va(t) = W () e " sin(wst) sin(wst), (4.1)
but has an asymmetric spatial distribution given by a combination of a dipole and a
rotated quadrupole fields
W () = A(cosf + cos2(6 + b)), (4.2)

where 6 is the rotation angle. The perturbation is depicted in Figure 4.1 for 6, = 0°,
when the pulse is symmetric, and for 6, = 45°, when it is asymmetric. Initially, the
system is in its ground state where right and left rotating states, |m) and |—m), are
equally occupied and the current is consequently zero. As expected, the left panel of

Figure 4.2 shows that if the external pulse, like the ring itself, is left /right symmetric
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\ pl————
0 0.2 0.4 0 0.2 0.4
time [ps] time [ps]

Figure 4.1: Spatial distribution of the external potential pulse as a func-
tion of time for (a) 6y = 0° and (b) 8y = 45°. The parameter values
are hwy = 2.83 meV, hwy = 8.11 meV, hl' = 11.32 meV and A = 67.68
meV. The frequencies are chosen to be comparable to the Bohr frequen-
cies hwo1 = 2.89 meV and hwis = 8.6 meV. Bright/yellow regions indicate
maxima in the potential.

(6o = 0) a current can not be induced since the occupation of angular momentum states
remains symmetric. However, by introducing an assymmetry to the perturbation a
net (constant) current appears. For this set of parameters the excited current reaches
a maximum value for a rotation angle of 6, = 45° and decreases towards zero for
0, — 90°. For a weak excitation pulse a perturbation analysis to 2"¢ order reveals
that the difference in transition probability between states |1) and |—1), for a single

electron initially in the ground state |0), is proportional to sin 26,
PO,I (t) - P07_1 (t) = F(t) sin 290 (43)

where F'(t) is a double integral which depends on the parameters of the external
perturbation. This implies that for a rotation angle of 6, = 45° the resulting current
is at maximum, as was the case in Figure 4.2 (left panel). However, a single-particle
perturbation analysis is not fully applicable to the system considered here, in part
because the number of electrons on the ring is greater than one and the perturbation
is stronger than the stationary Hamiltonian /y. The exact values of the perturbation
parameters have a strong influence on the resulting current, as is evident from the
right panel of Figure 4.2 which depicts the induced magnetic moment as a function of
the rotation angle for three values of I'. As I' decreases the maximum of the magnetic
moment shifts away from 6, = 45° indicating that the results have a more complex

dependence on the exact form of the perturbation, in particular the strength.



43

0.05

Mo/uB

—-0.05¢

-0.82

I =34.4/ps

Vi)

me o r=17.2/ps
. Yo o
=_0.86" G\“\@;,o_e/

/Tm 0]

o

I' =8.6/ps o

o o
0. g. O

[x800] |

0.5 1 . 45
t [ps] 0

Figure 4.2: Left: The time evolution of the orbital magnetic moment for
three values of the rotation angle 8y = 0°, 20°, 45°. Right: The induced
values of the orbital magnetic moment as a function of the rotation angle
Oy for three values of I'. The scale of the upper two curves has been
magnified as indicated. The inset depicts the time dependent part of the
perturbation for the three situations. The parameter values for the external
perturbation are given in the caption of Fig. 4.1.
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Figure 4.3: Left: Ratchet potential. Right: The orbital magnetic mo-
ment as a function of time when the system is perturbed by the asymmetric
pulse (4.1) with 6y = 45°. The parameter values for the perturbation are
given in the caption of Fig. 4.1. The strength of the ratchet potential is
a) Vio = 0.3Ey and b) Vig = Ey, with Eg = h?/2m*r¢. The dashed curve
is the time-evolution of the magnetic moment for a pure ring.
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The magnitude of the current generated in the system by a left/right asymmetric
excitation can be reduced by the inclusion of a ratchet potential as shown in Figure
4.3. The background potential causes oscillations in the induced magnetic moment
whose frequency grows with the height of the ratchets. Even for a very weak potential
the oscillations persist and the average current vanishes. It is interesting to note that
the period of oscillation can be much larger than that of the applied perturbation.

Another way of breaking the left /right symmetry of the ring is by the inclusion of
an asymmetric background potential and perturbing the system with the symmetric
pulse (3.9). Two types of potentials have been tested, a sawtooth (ratchet) potential
defined by

g g€ l0,Z]
V(0)={ %o (9-3), 0€(5.7) (44)

% O—m), 0¢€(m2n),
shown in the left panel of Figure 4.1, and a dipole-rotated quadrupole field

Va(0) = Vo (cos @ + cos2(0 + 04)) , (4.5)

shown in the right panel of Figure 4.4. The results, shown in Figures 4.5 and 4.6,

indicate

-1 - -1 -

Figure 4.4: Left: Asymmetric ratchet potential (4.4). Right: Dipole-
rotated quadrupole potential (4.5 with 04 = 45°).

that an asymmetric modulation of the quantum ring is not effective in aiding the
generation of a net current by a symmetric external perturbation. The background
potentials cause oscillations in the induced magnetic moment whose mean value is
very near to zero, i.e. no steady current has been generated. High frequency dipole

oscillations due to the external pulse are superimposed on larger oscillations whose
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frequency increases with the strength of the modulation. Even for a very weak modu-
lation the oscillations still appear, with a period much larger than that of the applied
perturbation, as the right panel of Figure 4.6 shows.
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Figure 4.5: The time-evolution of the orbital magnetic moment of a ring
modulated by the ratchet potential (4.4) when subject to the symmetric
pulse (3.9). The perturbation parameters are listed in the caption of Figure
4.1. The strength of the ratchet modulation is V,g = Ey, with Fy =
h?/2m*r¢. The left panel shows a closer look at one “beat” in the right

panel.
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Figure 4.6: The time-evolution of the orbital magnetic moment of a ring
modulated by the dipole-rotated quadrupole potential (4.5, with 6, = 45°)
when subject to the symmetric pulse (3.9). The perturbation parameters
are listed in the caption of Figure 4.1. The strength of the ratchet modu-
lation is Vd(] = EO = 842/€BT (left) and VdO = 005E0 = 042kBT (I‘ight).






CHAPTER 5

CONCLUSIONS

The one property of the quantum ring which has recieved the greatest interest is its
persistent current which appears when the ring is placed in an external magnetic field.
The persistent current appears due to breaking the left /right symmetry. In a magnetic
field the ground state of the system moves to higher negative angular momentum in
order to minimize its effective kinetic energy. Occupation of states with a positive
angular momentum becomes depleted and a constant current flows along the ring.
Due to the periodicity of the energy spectrum, the persistent current is periodic in the
magnetic flux threading the ring.

When the interaction between electrons is included within the Hartree-Fock ap-
proximation the properties of the system can be divided into three cases depending
on the strength of the Coulomb interaction. When the ring contains a large number
of electrons the kinetic energy is the main force of influence on the system and con-
sequently the energy spectrum and therefore the persistent current are qualitatively
similar to that predicted by a noninteracting model with spin included. If there are
few electrons on the ring the Coulomb interaction has a much stronger influence than
the kinetic energy. Due to the exchange interaction the system becomes spin polarized,
i.e. only electrons of the same spin are present in the system. In this case the energy
spectrum and thus the current is similar to that of a ring containing noninteracting
spinless electrons. In between these limits the inclusion of the Coulomb interaction
produces features which cannot be seen in a model of noninteracting electrons. In the
case of an even number of electrons the groundstate shifts between a spin degenerate
(S = 0) and a spin polarized (S = 1) configuration. For an odd number of electrons
there is always some degree of spin splitting due to the inequal number of electrons of
opposite spin. The persistent current displays kink-like structures which, for an even

number of electrons, gradually disappear with increasing number of electrons. For odd
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electrons the kinks remain quite pronounced at least up to N, = 9.

The persistent current can be manipulated by applying an external time-dependent
perturbation which resembles a dipole radiation field. The perturbation excites the
system to a higher energy state with a different combination of angular momentum
states than that of the ground state, thus changing the persistent current. In a pure
one-dimensional ring there are no forces to sustain oscillations in the current after ex-
citation, it reaches an equilibrium value immediately when the perturbation vanishes.
At the points where the magnetic field is not able to break the left /right symmetry of
the ring and the ground state persistent current disappears, the (symmetric) pertur-
bation cannot induce a current in the ring. However, by introducing an asymmetry
to the perturbation a constant current can be generated at a zero magnetic field. The
appearance of a persistent current in quantum rings relies on the breaking of their
left /right symmetry. However, if the ring is modulated by an asymmetric background
potential the symmetric pulse causes an oscillating current whose period can be very

large compared to that of the pulse.



APPENDIX A

FOCK MATRIX ELEMENTS

When the plane wave basis of hq (2.10) is used to represent the single-electron states
of the Slater determinant, the matrix elements of the Coulomb interaction terms can
be calculated analytically. The matrix elements of the Fock operator (2.49) include

two-electron integrals of the type
wmwmwz/mwwwwﬂw—ﬂ*ﬁwmw>

il0 ,—imb inG/ —ipt’
9 e"e 1 e "
= /ro de do’ / 5 (A1)
ro/sin((6 — 0")/2) + u2  2mro

1 ei(nfp)G

= do =m0 [ qy’
47T27“0/ Vsin?((0 — 0)/2) + p2

where we have inserted the interaction kernel

e—r| (ro\/sinQ((G —0)/2) + ug) B (A.2)

describing an interaction along a straight line connecting two electrons at # and 6’. To
eliminate the singularity of the Coulomb interaction at 6 = 6’ a screening constant

is inserted. With a change of integration variables z = (6 — ¢')/2 (A.1) becomes

<¢l¢ |¢ (b > — L /d@ ei(lfm)e ei(nfp)g 0/2 722(11 p)T (A3)
g 2121y 0/2—m \/sm x+us

To calculate the inner integral, which we will denote K, (6), we rewrite the interaction

kernel using the relation

1 *
e —|zlk
o /0 dke Jo(kp), (A.4)
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where Jy(z) is the Bessel function of the first kind of order zero. On inserting this K,

becomes (5 > 0)

0/2 ‘ 00
K,.(0) = /0/2 da PP~ /0 dk e "<* Jo(k sin x)
0 0/2 '
= / dk e™Hs¥ / da P~ I (K sin ) (A.5)
0 0/2—m

0o 0/2
= /0 dk e“sk/g dz [cos(2[p — n]z) + isin(2[p — n]z)] Jo(ksinz).

/2—m
To find the inner integral we use results from Gradshteyn and Ryzhik [92]
(6.681 6. p. 756)

/ dx Jo(2z sin ) cos 2nx = wJ>2(z)
0

(6.681 8. p. 756) (A.6)
/ dz sin(2px)Joy (2asin ) = wsin(pr)J,— (@) Joiu(a),
0
Rev > —1.

Although the integration limits are fixed to 0 and 7 (A.6) is still valid for calculating
the inner integral of (A.5) since the integrand has a period of = and the length of the

integration interval one period, therefore

6/2
/9/2— dz cos(2[p — n]z)Jo(ksinz) = wJ>_, (k/2)

s (A7)
/0 dz sin(2[p — n|z)Jo(ksinz) = wsin([p — n|7)Jp—p(k/2)Jp—n(k/2) = 0.

/2—m
Inserting this into (A.5) we get
Kpn(0) = / dke " 2 (k/2)

0 o (A.8)
= 27?/0 dk’ e_QMSK/Jsfn(k,)a

where we have performed the variable exchange k/2 — k’. To evaluate this integral

we turn to Gradshteyn and Ryzhik
(6.612 3. p. 730)

/OO dx e " J,(Bz)J,(yx)
0

= 1 _
LAVATC R 203
Re(a+if i) >0, v>0, Reu>—%,

(A.9)
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where (Q(z) is the Lagrange function of the second kind [88]. The last condition only
applies for p —n > 0, however, from (A.5) we see that the integral K, only depends
on the difference p —n and furthermore that it is Hermitian K, = K,,. Therefore, it
is sufficient to calculate the integral for p —n > 0 and using the Hermiticity to obtain
the results for the remaining combinations of p and n (for which p —n < 0). The

integral becomes
K, (0) = 27r/0 dk' e7 K J2_ (k) =2 Qpn-1(2ui+1)  (p—n>0). (A.10)

The argument for the Lagrange function is very close to unity when p is small. The

asymptotic form of Q(x) in the vicinity of z = 17 is given by [88]

Qur)=—v—9Yv+1)— %ln (g — %) , (A.11)

where v is the Euler constant and v (x) is the Euler psi function which obeys

1
Yo+ 1) = (o) + - o

¢(%):—7—21n2+2

and can therefore be calculated recursively. Using (A.10) the two-electron integral can

be written
(Gr0nlomn) = —— [ BTG, 21 1)
2

_ 2
= prnfé (2u5 + 1) 01—min—po

(A.13)

leading to an analytic expression for the matrix elements of the Fock operator

2
« € «
Flm = hlm + 4 E pzj;n <¢l¢n|¢m¢p> - ppn <¢l¢n‘¢p¢m>
Teoer 4 —
4Eq 1o Z a
== hlm + T ? 5l7m,pfn |:p]1;n Qp7n7%<2:u§ + 1) - panmfnf% (2/’63 =+ 1)
0 n7p

(A.14)






APPENDIX B

INTERACTION ENERGY

The expression for the interaction part of the Fock matrix elements (A.14) can be
worked further to yield a simple expression that casts light on the role of the screening
constant . Inserting for the Lagrange function and simplifying the interaction matrix

elements for spin o become (neglecting constants)
(LIVisIm) = 0 mpn [—pﬁn(’wlnus) — Pt (p—n+ )+ plp(m—n+3)| (B.1)
n,p
(interchange « and [ for spin ). The Coulomb interaction
1 1

2 B.
2 roy/sin® ([0 — 0,]/2) + 2 (B.2)

is rotationally invariant

and can therefore not couple states of different angular momentum. The Coulomb

matrix is thus diagonal with elements

(ml Vi | Z%p n[ Ppn (7 + 10 115) — pfnw(p—n+é)+p§‘nw(m—n+§)]

= Z —p (v +In ) — L (3) + Pl (m —n+ 3)]
Z—Nf(vﬂnus v(3) +ann m—n+3)

= —NZ(v+Inps +v(3) - N“?/}% +ann m—n+3)
(B.4)
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The total interaction energy becomes
Bt = Efgy + B = D o (ml Vi [m) + Y plh (m] Vi Im)
= —2NINZ(y +Inps +9(3)) = o(3) [(N2)? + (NF)?] (B.5)

D o Dbl =k 3) Y P S bl =4 3)



APPENDIX C

ORBITAL MAGNETIC MOMENT

The orbital magnetic moment of a system of electrons on a ring can be calculated
exactly when the Coulomb interaction is neglected. The orbital magnetic moment of

a system is defined as
M, = %/dr v x (J())] & (1)

where 1 is a unit vector perpendicular to the plane of the system and <J (r)> is the
current density averaged over the Fermi distribution. The current density can be

derived from the continuity relation by assuming a Hamiltonian of the form

p2

H=— 2
L v (c2)
and is given by
e
I(r) = =5 [vIr) (] + [r) (x| v], (C.3)
where v is the effective velocity
1 h , e
ve— (pteA) = — (—N n ﬁA> . (C.4)

Using this definition the current of a state |¢;) is given by

Jilr) = (el I i) = =3 [l v ) (efos) -+ (W) {ol v )]
= =5 VO ) () + 6 )V ()0 ()]
(C.5)

= —eRe {¢} (r)v(r)y;(r)}
= —ZRe {w:(r> (—iV + %A) W”} '

The total current density is the sum of the currents of each state weighted by the

occupation number

<J(r)> = Z flei — 1) Ji(r). (C.6)

%)
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The magnetic moment is therefore

M, = %/dr[r < (3] -
) WCE /0% rodoe. - [rx Re {ui(r) (<iV + SA) wi(n) )]

h 2
_ _Zn:f: ; fle — u)/o doe, - [r x Re {—z’zp;‘(r)vwi(r) + %sz‘(r)wi(r)” _
(C.7)
The cross product can be done before taking the real part, and since
1
XV = X = (©8)

1 B ’B
rxA=rx|[—rxB|]=rx To—ég —To—ez
2 2 2

we therefore get (with é, - é, = 1)

2m*

-G e [ aone w0+ B0} @

Expanding |¢;) in the basis of Ao (2.10) as well as using

the magnetic moment becomes
M* 2
M, = -8 i — do
SR /

a —im0 )
e {_Z > e =g+ me Y C?C"mel(l_m)e} (C.11)

lym I,m

* 2
';L—i Z flei —p) / df Re {Z (m —mg) c:lcime’(l_m)g} :

Im

By interchanging the integration and summation and using

2T
/ df =m0 = 976y, (C.12)
0
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we get

M, = i’ Z f(ei — u)Re {Z (m — M) ¢Cim Oim

Im

= iy Z f(ei — 1)Re {Z (m —meg) Cfmcim}

m

= 1 30 D (e = )i (m = ma)

:MEZPmm (m_mq))'

}

(C.13)
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