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Chapter 1

Introduction

Quantum dots are small electron systems, a few nanometers in diameter, which
can be realized by means of modern fabrication techniques. The electrons’ motion
is confined in all three dimensions, leading to a discrete energy spectrum, in that
sense, a quantum dot is in fact a zero dimensional structure. The discrete energy
spectrum and the man-made confining potential characterize the quantum dot as an
artifictal atom. The typical energy level spacing of a quantum dot lies in the range of
a few meV, i. e. within the far-infrared (FIR) range of the electromagnetic spectrum.
The FIR absorption has been measured for quantum dots of various shapes. In the
model calculations presented in this thesis, such quantum dots have been modelled
with a general confinement potential, which is in fact a multipole expansion in two
dimensions. When the circular symmetry is broken, the angular momentum is no
longer conserved.

The thesis is divided into the following parts:

e Before focusing on the model calculations, the methods of fabricating quan-
tum dot structures for FIR spectroscopy will be sketched (Chapter 2). In the
experiments, a magnetic field is applied perpendicular to the plane the elec-
trons move in, having important effects on their energy spectra and absorption.
For circular or elliptic quantum dots, a harmonic confinement potential has
proven to be a realistic approximation. For their FIR absorption, the gener-
alized Kohn theorem applies. It states that FIR radiation couples only to the
center-of-mass motion of the electrons. This will be formulated in Chapter 2.

e The properties of a single electron quantum dot will be discussed in Chapter 3,
for circular parabolic, elliptic and square symmetric confinement potentials.
Effects of the confinement on energy spectra, calculated as a function of the
external magnetic field, will be shown. A solution method to Schrodinger’s
equation, for the general confinement potential, will be given.

e For more than one electron in a dot, their mutual Coulomb interaction has im-
portant effects. The typical Coulomb energy is of the order of 10 meV, which is



of the same order or larger than the confinement energy. The Coulomb interac-
tion will be taken into account within the Hartree approximation (Chapter 4).

When the energy levels and eigenstates, of the interacting electrons, have
been calculated in the Hartree approximation, the FIR absorption of electron
system can be calculated with the time-dependent Hartree approximation.
Expressions for the dielectric tensor and the power absorption are derived
in Chapter 5. Absorption spectra will be shown for harmonic quantum dots
(Chapter 6) and square symmetric dots (Chapter 7). Results will be compared
with the predictions of Kohn’s theorem for harmonic dots, whereas traces of
the Coulomb interaction will be identified in the absorption spectra of square
symmetric dots.



Chapter 2

Quantum dots and far-infrared
spectroscopy

In this chapter, the realization of a two dimensional electron gas (2DEG) on the interface
between GaAs and Al,Ga;_;As semiconductors is described. Fabrication of arrays of
quantum dots from the 2DEG, suitable for far-infrared spectroscopy, is discussed. For
circular dots, a circular symmetric parabolic confinement potential has proven to be a
realistic approximation. For such dots in a perpendicular magnetic field, the generalized
Kohn theorem has important consequences. It states that FIR radiation only couples to
the center-of-mass motion of each dot, due to its long wavelength (> 1um) compared to
the diameter of the dots (50-500 nm). A proof of the theorem, by P. A. Maksym and T.
Chakraborty [1], is given. Generalized results, for a parabolic confinement with arbitrary
strength in each dimension, are sketched [2].

2.1 Two dimensional electron systems

GaAs and Al,Ga;_,As are semiconductors with similar lattice constants (= 5.65 A
for GaAs) and can thus be brought together to form a heterostructure. They are
grown on top of each other by Molecular Beam Epitaxy (MBE). Their different
bandgaps, 1.5 eV for GaAs and (1.5 + 0.7z) eV for Al,Ga;_,As, lead to a band-
discontinuity at their interface (Fig. 2.1). The coupling between the conduction and
valence bands can be neglected in FIR experiments, due to their wide bandgaps.

At very low temperatures, semiconductors are insulating. However, if they are
selectively doped, free carriers are introduced. By doping the Al,Ga; ,As-layer with
Si-donors (concentration of the order 10'® ¢cm™2), the conduction electrons move to
the GaAs-layer, since it has a lower bandedge, and leave behind positively charged Si
ions. A layer at the interface is left undoped, the so-called spacer layer. It separates
the electrons from the Si-ions and thus reduces impurity scattering. This results
in the (conduction) band structure in Fig. 2.2. A triangular potential is formed at
the interface and the conduction electrons are confined by this potential to a layer
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Figure 2.1: A schematic picture of the bandstructure at the heterostructure interface.
The difference in bandgaps leads to a discontinuity at the interface. The GaAs has a lower
conduction band edge than Al Ga;_;As.

of thickness &~ 10 nm. This leads to a quantization of the electron motion in the
growth direction of the structure and subbands are formed in the triangular well.
If only the lowest subband is occupied, the electron motion in the growth direction
is frozen out. The electrons are then confined to the two-dimensional interface [3].
The electron motion separates into a bounded motion perpendicular to the interface
and an in-plane free motion. The energy levels take the form [4]

h2
2m*

E=E,+ (k2 + k),

where m* is the electron effective mass, k; and k, are the wave-vectors parallel to the
interface and F,, are the electric quantum levels arising from the confinement in the
z-direction (growth direction). The effective Bohr radius in GaAs is aj = 9.79 nm
which is much larger than the lattice constant of the materials (5.65 A for GaAs).
The electrons’ wavefunctions “experience” an average lattice potential and the effect
of the surrounding lattice is included in the effective mass (m* = 0.067m, for GaAs,
me is the free-electron mass). The dielectric constant is also changed, €, = 12.5 for
GaAs, but is equal to 1 in vacuum. It should be noted that SI-units are always used
in this thesis when expressing physical quantities.
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There are several ways to create quantum dots from the 2DEG. One way is to
place metallic gates on top of the heterostructure and apply a voltage to them such
that a small island of electrons is formed [3]. Such a system is called a quantum
dot. The motion of the electrons is confined in all three dimensions, leading to a
discrete energy spectrum, in that sense, the system is zero-dimensional. This kind
of quantum dot is used in tunneling measurements.

Excitation energies for transitions between the discrete quantum dot levels are
in the range of a few meV; the far-infrared range of the electromagnetic spectrum.
In FIR absorption measurements, the signals are usually very weak. It is therefore
necessary to produce an array of many identical dots, to obtain as strong signals as
possible. This is done with holographic lithography and etching processes.

2DEG )
Conduction
/ band
+++ c,
Si-ions
AlGaAs GaAs

Figure 2.2: Schematic conduction bandedge profile of the Al,Ga;_,As/GaAs heterostruc-
ture doped with silicon.

2.2 Realization of quantum dots for FIR measure-
ments

To produce arrays of many identical dots, holographic lithography is used. Essen-
tially, it is done by placing, on top of the AlGaAs, a layer of material sensitive to an
incident light beam; a so-called photoresist. A schematic picture of the holographic
lithography process is shown in Fig. 2.3. A laser-beam is broadened and parallelized
through a lens. It is then directed in two directions with a beam-splitter and the two
beams are reflected by mirrors on each side onto the sample. Then, the photoresist
is developed, removing stripes where the two beams interfered constructively and
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Figure 2.3: The holographic lithography process [5, 6].

light shone on the resist. The period of the array is determined by the angle © and
the wavelength of the light. In forming a dot-structure, the sample is turned 90°
and the same process is performed. The substrate is then etched and shielded with
an isolating layer, f. ex. SiOs. Fig. 2.4 shows one type of a quantum dot array. Ad-
justment of applied voltage, Vg, varies the number of electrons in each dot [5]. At
low temperatures, the number of electrons in each dot is stabilized, since the energy
required to add/remove one electron is much larger than the typical energy provided
by thermal fluctuations (~ kgT), due to the electrons’ mutual Coulomb interaction.
The dot array in Fig. 2.4 is a combination of two methods, deep-mesa-etching and
field-effect confinement. In deep-mesa-etched dots, the electrons are confined to the
middle of each dot by the positively charged Si-donors and negatively charged sur-
face states. In field-effect confined dots, there is no etching into the substrate and
a layer of a semitransparent gate is placed on the photoresist structure. A negative
gate voltage confines the electrons under the photoresist dots and varies the number
of electrons [7].
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Figure 2.4: Schematic figure of a gated, deep-mesa-etched quantum dot array [5, 6].

e Circular quantum dots: To form circular dots, the sample is exposed to
light for equally long times in each direction of the sample.

e Elliptic quantum dots: The sample is exposed to light for different times in
the two directions of the sample. The proportion of times gives the proportion
between the major and minor axes of the dots.

e Square quantum dots: Dots with square symmetry can be made by an
anisotropic plasma-etching |[8].

For FIR absorption of quantum dots, not only the resonance energies are essential.
The wavelength of FIR light is much larger than the diameter of each dot, such that
the electric field experienced by it is spatially constant. For harmonic quantum dots
(i. e. electrons confined by a harmonic potential), the generalized Kohn theorem
then has important consequences. It states that FIR light only couples to the dots’
center-of-mass motion. This is formulated in the next section.

2.3 Kohn’s theorem

The energy levels of a free electron in two dimensions in a (perpendicular) magnetic
field (of magnitude B) are the Landau levels [9]

1
E, = (n+§>hwc, n=0,1,...

and



2.3 Kohn’s theorem 11

is the cyclotron frequency. Classically, the electrons move under the influence of
the perpendicular magnetic field in circles with the cyclotron frequency w.. The
original Kohn theorem (by the Nobel laureate Walter Kohn) states that the light
absorption of a translationally invariant two-dimensional electron gas is unaffected
by the electron-electron interaction U,

U= Zu(ri — ;). (2.1)

In this case, the absorption is always at the cyclotron frequency, w,. [10].

2.3.1 The generalized Kohn theorem
Isotropic harmonic quantum dots

The generalized Kohn theorem includes electrons in circular quantum dots described
by a circular parabolic (isotropic harmonic) confinement potential subject to far-
infrared radiation [1, 2, 11, 12, 13|. The total Hamiltonian for the electrons in such
a quantum dot is

1 1 1 é? 1
H= e Z(Pz +eA)? + §m*w§ er + - Z = (e>0), (2.2)
- —1 r it ]

where we have the kinetic, confinement and interaction term, respectively. wy is the
confinement frequency, —e the electron charge, N, the number of electrons in the
dot, €, is the dielectric constant and ¢y the permittivity constant. The wavelength
of FIR radiation ranges between 50 pym and a millimeter and the diameter of a
quantum dot is typically 50-500 nm. Each dot experiences therefore a spatially
constant electric field. Assuming that it is harmonic in time, its interaction with
the electrons is described by the Hamiltonian

H =—e¢ i E® . rje ™t (2.3)
_ QE;;- Re ™t (2.4)
where N
TR
R = Fg 2 r;

is the coordinate of the center-of-mass and

Q = _ENS
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is the total charge. The Hamiltonian can be rewritten as [1]

H= o (P+QAY + MR + Ho, (2.5)
where P = Zl | Pi, A is the vector potential of the center-of-mass and M = Nym*
is the total mass of the electrons. H,; is a function of only the relative coordinates
and includes the effects of the interaction. H,., and H,, commute. H' is expressed
in terms of the center-of-mass coordinate R, but does not depend on the relative
coordinates. Therefore it commutes with H,.;. H' does however not commute with
H.,,. As a consequence, FIR excites only the center-of-mass motion; the interaction
1s unaffected by it. H.,, has exactly the same form as the Hamiltonian of a single
particle. Furthermore, absorption occurs at the same frequencies as for a single
electron

wy = %(Q +w), (2.6)

Q= /w?+ 403,

since w, depends only on the charge-to-mass ratio

e @

m* M’

where

Anisotropic harmonic quantum dots

The generalized Kohn theorem has been extended to include also parabolic con-
finement potentials with arbitrary unequal confinement frequencies, w,, w, and w,
in the three directions [2, 13]. A general dispersion equation for the absorption of
electrons in a tilted magnetic field is then
w® — W (W] + Wl + Wl + w?)
+w’[w? (w} sin® § cos® 1 + w} sin® f sin” 1) + w? cos® §)
+(wiw? + wiwi + wiw?)] — wiwiwl =0,
where (0,1) are the angles in spherical coordinates defining the direction of the

magnetic field. In the case of a magnetic field perpendicular to the two-dimensional
plane (6 = 0°) and an elliptic confinement potential in the two directions,

conf m E w '/I" + wyyz

the third degree of freedom is frozen out and the eigenmodes are solutions to

w! — W (Wl + W + wl) + wiw] = 0. (2.7)
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The eigenfrequencies are then

w2 4 w2 + w? £ (Wi + 2wH(w? + w2) + (w2 — w2)?]!/2
2

wi = (2.8)
and w, and w, are the resonances at B = 0. Equation (2.6) is a special case of
eq. (2.8) with w, = wy = wy. Figure 2.5 shows the resonance frequencies, wy, given
by eq. (2.6) and (2.8) as a function of the external magnetic field.

N
T
!
N
T
!

[y
T
1

Resonance frequency way
(=Y
[l (&)
7 T
1 1
Resonance frequency woy,
(=Y
(6]
T
1

L L LT L L L

0 0.5 1 15 2 0 0.5 1 15 2
We/op W/t

(a) FIR resonances of a parabolically (b) FIR resonances of an elliptic dot with

confined quantum dot. we/wo = 105 and wy/wy = 0.95

(eq. (2.8)).

Figure 2.5: FIR resonances of an isotropic (a) and an anisotropic (b) harmonic quantum
dot.

The energy spectrum and eigenfunctions of a single electron circular quantum
dot in a perpendicular magnetic field, described by an isotropic harmonic confine-
ment potential, has been known since the late twenties [14, 15]. In the next chap-
ter, the properties of such an electron system will be discussed. An addition of a
multipole expansion in two dimensions to the confinement potential will break the
circular symmetry. A solution method to Schrédinger’s equation will be presented
and energy spectra will be calculated for elliptic and square symmetric confinement
potentials. Effects of the deviation confinement on energy spectra will be discussed.



Chapter 3

Quantum dot hydrogen

The man-made confinement potential and the discreteness of quantum dot energy spectra
have given rise to the name artificial atoms for quantum dots. For electrons in circular
quantum dots, an isotropic harmonic confinement potential has proven to be a realistic
approximation. The energy spectrum and wavefunctions of the associated Hamiltonian
were found by Fock in 1928 [14] and Darwin in 1930 [15] for a single electron in a per-
pendicular magnetic field (section 3.1). When a multipole expansion (in two dimensions)
is added to the circular parabolic confinement potential, the circular symmetry is broken.
The influence of the multipole expansion on energy spectra is discussed for elliptic and
square type confinement, in view of selection rules and first order perturbation theory. A
solution method to the associated Schrédinger equation is sketched.

3.1 An isotropic harmonic quantum dot in a per-
pendicular magnetic field

The Hamiltonian for a single electron, of mass m*, moving freely in an external
magnetic field, is given by

h? ) € . \2

We assume that the electron motion is confined to two dimensions. We express the
vector potential in the symmetric gauge

1
A= §B(—y,x, 0),
where B = |B| and (z,y) are the Cartesian coordinates. Then,
B=VxA=(0,0,B);

the external magnetic field is in the z-direction. In this gauge, the Hamiltonian (3.1)
transforms into

h2

2m*

i m*w?
6—2) +—3 r?, (3.2)

1 1
2 2
Hy = — (ar+;8,+r—26¢+
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where (7, ¢) are the polar coordinates. The so-called magnetic length, ¢, is given by

2 = i
eB
and the cyclotron frequency, w., by
_eB
We = %

If the circular parabolic confinement potential, Viu (7, ¢) = %m*w%rQ, is added to
Hy, the Schrodinger equation becomes

(Hy + Vyar)® = E®.

The eigenfunctions are given by

1 n,! 2(r\Ml 5 r’ j
b= o i) () () s
i, (75 &) s ian o) \a) € ne (9g2)¢ (3.3)

where a new characteristic length scale is formed by the magnetic length and the
confinement potential
ZQ
[ — (3.4)
1 +4(20)2

LLAT/[‘(:C) is the Laguerre polynomial given by

1w = Yo vr (I (35

n, — k
k=0 T

The energy spectrum is

Ml 1 1
Frtn, = [n i |2—‘ i 5} B — 5 Mha, (3.6)

Q=4/w?+ 4w

is a characteristic confinement frequency. The relationship between the two quantum
numbers M and n, is sketched in Fig. 3.3. M describes rotation around the z-axis
and is an angular momentum quantum number, but n, is a radial quantum number.

We can use eq. (3.6) to plot the energy spectrum as a function of the external
magnetic field (Fig. 3.1), a graph named after Darwin-Fock. One should especially
notice the degeneracy at B = 0 T. This is the familiar two-dimensional harmonic

where
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Figure 3.1: A Darwin-Fock graph of an
isotropic harmonic quantum dot. The
states at B = 0 T are labelled with
(M,n,). We use fiwg = 3.37 meV.

Figure 3.2: The energy levelsat B=0T
plotted as a function of the angular mo-
mentum quantum number, M. The quan-
tum numbers are the same as shown in

Fig. 3.3.

oscillator, a special case of eq. (3.6) with B = 0 and hence w. = 0. The energy levels

then fulfill the equation

EM,nT == (27’L7- -+ |M| -+ 1)hw0

(3.7)

To see the degeneracy at B = 0 T more explicitly, we can plot the energy (eq. (3.7))
as a function of M for given n, (Fig. 3.2). For a given n, the energy levels can be
interpolated with lines of slope +hwy. As the external magnetic field increases, the
lines’ slope for M < 0 increases (becomes more negative) but for M > 0 the slope
decreases. This lifts the degeneracy of the levels.
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Figure 3.3: The relationship between the quantum numbers M and n, in a truncated
subspace with n]***=3 and M™% =4. For a given n,, the minimum value of M is —n;"**.
The lowest value of n, is zero.

3.2 Deviations from the circular parabolic confine-
ment

A contribution of the form

pmam

Vo(r, ¢) = %m*wﬁrQ Z o, cos(2pg), (3.8)
p=1

to the parabolic confinement V,,,(r, ) breaks the circular symmetry. This is a
multipole expansion in two dimensions with high symmetry as the potential is mirror
symmetric around both the z and y-axis.

3.2.1 Elliptic confinement

In the special case a; # 0 and oy, = 0, p # 1, one can rewrite the total confinement
potential as

Viont(2,1)) = %m*wg((l +an)e® + (1— a)y?). (3.9)

The total confinement potential then has equipotential lines of elliptic form. The
ratio between the minor and major axis of an equipotential curve is then seen from

eq. (3.9) to be
T 1-
e JE i (3.10)
Wy 1+
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where w, and w, are the minor and major axis’ lengths respectively (if we assume
that 0 < a; < 1). Fig. 3.4 shows one example of an elliptic confinement potential

W
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p "

/t
0
///,,4‘\\\\\\
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]

[
X
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Ul
\\’\{I\'\’\

u

-10

10 10

Figure 3.4: A plot of an elliptic confinement potential (eq. (3.9)). ey = 0.3 and as = 0.0.

for ; = 0.3. In Fig. 3.5, the equipotential lines of an elliptic confinement are
shown in comparison to the equipotentials of a circular parabolic confinement. The
energy spectra for a; = 0.1, 0.2 and 0.4 are shown in Fig. 3.6. A comparison with
Fig. 3.1 shows that the elliptic deviation lifts the degeneracy at B = 0 T for the
circular parabolic confinement (the two-dimensional harmonic oscillator). This can
be argued with first order perturbation theory, the off-diagonal matrix elements for
which AM = +2 are non-zero;

27
(M, n,|Vg|N, m,) / dpe 2Mcos(2pe) (AM =N — M) (3.11)
0
= 7T[5AM,2p + 5AM,—2])] (3.12)

The corresponding states are thus coupled and the degeneracy is lifted.
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Figure 3.5: Deviation from circular parabolicity in the cases a@; = 0.2 and a; = 0.4. The
deviation increases with increasing ;.

3.2.2 Square deviation from a circular parabolic confinement

Another special case is ap # 0 and o, = 0, p # 2. This is a square symmetric
deviation from the circular parabolic confinement. Fig. 3.7 shows the confinement
potential in the case ay =0.4. The energy spectra for ay = 0.2 and 0.4 are shown in
Fig. 3.8. It reveals an anticrossing at B =~ 2.3 T. The states |1,0) and | — 3,0) are
accidentally degenerate in the circular parabolic potential. They fulfill AM = +4
and are thus coupled as eq. (3.12) shows. There is also a lifting of degeneracy at B =
0 T where AM = +4. The degenerate states at B = 0 T fulfilling M = +1 remain
however unchanged, whereas their degeneracy is lifted in the elliptic confinement
case.

3.2.3 Solution to Schrodinger’s equation

We denote by |(x) the states for a single electron in a general confinement potential
that does not necessarily have a circular symmetry. They are expanded in the
Darwin-Fock basis {|®;)},

|Ck) = chi|q)i>; (3.13)

where i := (M, n,). Schrodinger’s equation,

(Ho + Vpar + Vo) [G) = E[Ck)
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transforms into

Z(H0+Vpar+V¢ |®s) kzckz@ (3.14)

or
Z{<‘DJ|(H0 + Voar) i) + (@5|V5| @) bewi = Eycr; (3.15)
— Z{Ei%- + (@[ V5| ®i) bews = By, (3.16)

where E; is an energy level of (Hg + Viar), see eq. (3.6). Schrodinger’s equation has
thus been transformed into an infinite set of algebraic eigenvalue equations (3.16).
The solution can be approximated by truncating the basis. In order to solve the
matrix equation (3.16), the quantum numbers (M, n,), within the truncated basis,
are mapped with a bijective mapping to a single number 1 < 7 < ™% where
i represents the dimension of the basis {|®;)} (and the number of eigenvalue
equations). The dependence of M and n, on each other is shown in Fig. 3.3. The
bijective mapping ¢ : A — D with D C N\ {0} and A C Z x N,

np—1

UM,n,) = (N =j)+1+M+n"" —n, (3.17)

J=0

where N = n"* + M™% 41 is the number of quantum numbers in the first row
(n, = 0), fulfills the requirements. The sum counts the quantum numbers in rows
n, = 0up to (n,—1). The minimum value of M for a given value of n, is (—n**+n,.).
With a few algebraic steps, the mapping can be written as

1—n,
2

WM, n,) = n, (n* + M™ + ) + 0™+ M+ 1, (3.18)
The mapping fulfills ((M™" = —p™® () = 1. It is strictly increasing and 7 increases
by unity when

e M is increased by 1 within the same n,,
e going from (M™% n,) to the minimum M in (n, + 1); (=n™** + (n, +1)).

The solution to eq. (3.16) then gives the energy levels (eigenvalues) {E}}t_". For
a given k, the vector (cx;)i;" gives the expansion coefficients of |(;) in the Darwin-
Fock basis {|®;)}.

The matrix element of the deviation potential, (®;|V,|®;), is evaluated in Ap-
pendix A.1. In the case of a circular parabolic confinement, c;; = d;;. The wave-
functions are the basis functions (3.3) and the quantum numbers M and n, are well
defined. However, for the general confinement, where the contribution Vy in eq. (3.8)
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has been added to the circular parabolic confinement, and 3 such that «; # 0, M
and n, are no longer defined for a given state. This is crucial as we will see later; we
have allowed for mizing of all M and n,. The mixing of M means in other words
that there is no longer conservation of angular momentum.

In this chapter, we have studied one electron systems subject to circular parabolic,
elliptic and square symmetric confinement potentials and the influence of the devi-
ation confinement on the energy spectra. For many electron quantum dots, their
mutual Coulomb interaction is of great importance, since the typical Coulomb en-
ergy, €?/(4me €9a), is of the order of 10 meV. The deviation confinement potential,
Vs, is of a very general kind and solving Schrodinger’s equation requires mixing
of all quantum numbers (M, n,) within the truncated basis. This increases largely
the running time of programs when the Coulomb interaction has been taken into
account. In the following chapter, we will investigate the ground state properties
of 2-3 interacting electrons in quantum dots. To include the Coulomb interaction,
several many body approximations exist, such as the Hartree-Fock approximation
(HFA) or the local density approximation (LDA). Here, the Hartree approximation
will be used.
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Figure 3.6: Energy spectra for an elliptic confinement. The deviation to the circular
confinement, Vy, lifts the degeneracy at B = 0 T from the circular parabolic case (Fig. 3.1).
First order perturbation shows that the states for which AM = +2 are coupled. Note also
the accidental degeneracy at B =0T, E = 11.3 meV for a; = 0.4.
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Figure 3.8: Energy spectra for a square type confinement. The angular part of Vj,
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to coupling of | — 1,0) and | + 3,0), but these states are accidentally degenerate for this
magnetic field in the circular parabolic potential (Fig. 3.1). Also, the AM = +4 coupling

lifts the degeneracy of states at B =

0T.



Chapter 4

Many electron quantum dots

For more than one electron occupying the quantum dot, their mutual Coulomb interaction
becomes important and needs to be included. The typical Coulomb energy, ?/(4mepera),
is of the order of 10 meV, whereas the confinement energy (A2) is typically of the same
order. In this chapter, the influence of the Coulomb interaction on the quantum dot’s
charge distribution is studied in the case of harmonic and square symmetric 2-3 electron
quantum dots. The interaction is included within the Hartree approximation. It is a
mean-field approximation, which consists of writing an effective Hamiltonian for each elec-
tron and solving the associated (nonlinear) Schrodinger equation. The nonlinearity of the
equation and the strength of the Coulomb potential require it to be solved by iteration
self-consistently. Electron densities are shown for circular parabolic, elliptic and square
confinement potentials in zero magnetic field. For elliptic and square dots, the densities
are very different for 2 and 3 electrons. This must be explained by a mixing of M, which
is not present in the strictly harmonic case.

4.1 The Hartree approximation

The Coulomb interaction is included with the Hartree approximation (see [16]). In
this approximation, the effective Hamiltonian for each electron is written as
2

h ) € . \2
H = %( -1V + 7—71A) + ‘/;Onf(r) + VH(I') (41)

and Schréodinger’s equation,

H|W,) = e,|¥,), (4.2)

is solved. Vj(r) is the classical Coulomb potential established by the total electron
charge density. It is called the Hartree potential and is related to the electron density
via Poisson’s equation;

62

VQVH (I‘) = —

ns(r). (4.3)

€o€r
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with €y the permittivity constant and ¢, the dielectric constant. The solution to
Poisson’s equation (4.3) is

e ns(r')

Vi = dr’' — 4.4

u(r) 4dme, € / g r —r'| (4:4)
R2

with
1

dnlr — 1|
the Green’s function for the Laplacian, V2, in R3. The electron density is given by
2
ns(r) = Zf(ea)|\1’a(r)‘ ) (4.5)
where for thermal equilibrium
flea) = [exp (— 2 2) 4] (4.6)
o) = |exp | — :
Ay
is the Fermi distribution with kg the Boltzmann constant and 7" the temperature

of the system. The chemical potential, i, is determined by fixing the number of
electrons, Ny, in the dot;

Ns = Zf(ga)- (47)

The interacting states {|¥,)} are expanded in the basis {|®;)} previously defined
by eq. (3.3),

1 ny! Tor\IMl L, r? ,
By (1, ) = ( r ) (_) —12/4q L|M\(_) Mg, 48
M, r(r ¢) 2\M2|+1a 7T(|M| +n,«)! a € nr \9q2 € ( )

where i := (M, n,) and a is the natural length scale defined earlier (3.4). We write!
“Ijo) = anim)i)- (49)
In the same way as in eq. (3.16), this yields a matrix equation

Z{EZ&J + (@]|V¢|q)z> + <(I)]|VH‘(PZ>}CM = €alaj- (410)

Equations (4.2), (4.4) and (4.5) constitute the Hartree equations. They are sum-
marised in equation (4.10). This matrix equation is however very different from
eq. (3.16). It is nonlinear with respect to the basis {|®;)}, since Vg includes multi-
ples of the form ®;®; via the electron density (4.5). This nonlinearity, along with
the relative strength of the Coulomb interaction compared to kinetic energy terms,
requires this matrix equation to be solved iteratively until a self-consistent solution
is obtained. The iteration procedure is described in section 4.2.

INote that Greek letters are used for the interacting energy states but Arabic letters in the
non-interacting case. Also, ® and ¢ denote non-interacting wavefunctions, whereas ¥ denotes the
interacting wavefunctions.
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4.2 The iteration process

In this thesis work, a majority of the calculations has been performed analytically.
Due to the mixing of all quantum numbers within the truncated basis, program
running time is very long compared to running time for a circular parabolic confine-
ment when (M, n,) are well defined. The analytic calculations reduce of course the
numerical analysis required and thus increase the program running speed as much
as possible. It was possible here to evaluate the matrix elements (®,|Vy|®;) analyti-
cally (Appendix A.2) and thus is was straight forward to perform the self-consistent
calculations by mixing the matrix elements. In the n-th iteration, matrix elements
were mixed according to

Hij = (Ho + Veont)ij + AaVii; + (1 — o) (BVES + (1= B)VEE!Y), (4.11)

with o =0.5 and 3 =0.7. Vg%, are the matrix elements calculated in iteration (n-1)

and ng?]’."ld in iteration (n-2). The procedure for the Hartree iteration is shown
schematically in Figure 4.2. The convergence was calculated, using the norm

1 jmaz ;max (VHZ _ VOld_)Z
dy _ i .
Vi — Vg ||—Z-m7§:§: VT e (4.12)
i=1 j=1 Hyij

¢ was added in the denominator to avoid division by zero, chosen here to be e = 1073.
The norm was chosen such that the “distance” between the unity matrix and the
null matrix is equal to 1 (if € is not taken into account). When the criterium

Ve — V|| <d=10"° (4.13)
was reached, A\ was increased;
A — A, n=12, (4.14)

and so on. Each time ) is increased, the system experiences 20% more of the
interaction. It is then allowed to accustom itself to this interaction before A is
increased again.

Such mixing of matrix elements is quite unusual, but was straightforward here,
since the goal was to perform as much of the work analytically as possible. It was
necessary, in order to speed up the program running time as much as possible. In
general, when the problem is of a less general kind, it is custom to mix instead the
electron density or the Hartree potential, where these have been evaluated numer-
ically. In such cases, the time required for analytic evaluation of Hartree matrix
elements has been considered to largely exceed the time required for numerical anal-
ysis and program running time.

Figure 4.1 shows convergence for an elliptic confinement (a; = 0.4) for 2 and
3 electrons and B = 0.1 T. For the higher values of A, the convergence is no longer
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exponentially decreasing within one A\ and there appear “feedbacks” which become
more pronounced when the electron number is increased (occupation of higher energy
levels for the same basis). This appeared even more pronounced if Vgld"’ld was taken
out of the mixing. The matrix elements seem much more sensitive to changes than
the density or the Hartree potential. The latter two are mixed according to

X" = AX + (1 - M) X,
where X denotes either the density or the Hartree potential. X is calculated in

iteration n, X° in iteration (n — 1) and ) is always kept at the same value. Such
a mixing would result in an exponential convergence all the way through.

O.l T T TNS:ZT T T 1 T T T TNSY=3T T T T
0.1 D SV
o 0.01 | E @
(8] &) k
3 S 001f " { ]
2 o d
(] [«]
g 2 <
S 5 0.001 E
(@) 0.001 ¢ H (@)
0.0001 t J
00001 1 1 1 1 1 1 1e_05 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80 90100
Iteration Iteration

Figure 4.1: An example of convergence for a; = 0.4 and ag = 0.0. M™% = 3, n"¥ =

and B = 0.1 T. The peaks arise when A is increased. The system is then allowed to relax
until convergence is reached and then ) is increased again.

4.3 Results

When the energy states, €4, and the corresponding eigenvectors, ¢, = (cai)i-; , have
been obtained, the electron density can be evaluated with equation (4.5). Electron
densities are shown here in the cases

o; =0.0 and oy = 0.0 (Fig. 4.3),
a; =04 and as =0.0 (Fig. 4.4),
a; =0.0 and ay =04 (Fig. 4.5).



28 Many electron quantum dots

4.3.1 Circular parabolic confinement

Fig. 4.3 shows the electron densities for a circular parabolic confinement potential
(oy = 0.0 and ay = 0.0). For three electrons, there appears a circle in the density
which is much less clear for the two electron case. This difference can be explained
with aid of Fig. 3.2. The occupied states are (M,n,) = (0,0) and (+1,0) for three
electrons but (0,0) and either (—1,0) or (1,0) for two electrons. The corresponding
squared moduli of the wavefunctions are

[Bof? o« exp(—r?/2a7) (4.15)
1 2
(0] o 3 (C> exp(—r?/2a?) (4.16)
a

with the same proportionality factor. There are thus equivalent contributions to the
density from the (—1,0) and the (+1, 0) state but there is less weight of the Gaussian
|®g/? in the density of three electrons than for two electrons. This explains why
the circle appears more clearly in the three electron case.

4.3.2 Elliptic confinement

Figure 4.4 shows the electron density for an elliptic confinement (a; = 0.4) for two
and three electrons and their energy spectra. The density for three electrons is
somewhat similar to the three electron density in circular parabolic confinement.
There appear however four small peaks in the “circle” of the density. It can be
understood by observing that for the elliptic confinement, the surface within a given
equipotential line is larger than if a; = 0.0. For two electrons, two peaks occur in
the density. Due to breaking of the circular symmetry, the energy spectra are shown
in a single column. The angular momentum is no longer conserved and all angular
momentum quantum numbers (within the truncated basis) have been mixed. The
Coulomb interaction mixes M even further.

4.3.3 Square symmetric confinement

The electron densities and energy spectra for two and three interacting electrons are
shown in Fig. 4.5 for oy = 0.4. The two electron density shows more screening of the
interaction than for three electrons. Four peaks occur in the lower figure whereas
the electrons are three. There is strong M mixing due to the deviation confinement
and the interaction.

In this chapter, we have studied the ground state properties of 2-3 interacting
electrons in a quantum dot and shown the effect of the Coulomb interaction on
the electrons’ distribution. The interacting energy states, €,, were calculated by
iteration. They are necessary to be able to calculate the power absorbed by the
system, when subject to far-infrared radiation. The electrons “communicate” via
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the Coulomb interaction, such that excitations of the system will be collective. In
the next chapter, we will derive equations for the dielectric tensor and the power
absorption, calculated with a self-consistent method in the linear response regime;
the time-dependent Hartree approximation. When those are found, we're all set to
find absorption spectra for various confinement potentials.
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Energy states and
eigenvectors from the
non-interacting state

Va,ij calculated

Hij — Hij + AV ij

|

Eigenvalues and
eigenvectors recalculated

/
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Figure 4.2: The Hartree iteration scheme.
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Figure 4.3: The density of two (above) and three (below) interacting electrons subject
to a circular parabolic confinement potential. The circle in the three electron density
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the two-fold degeneracy of the next lowest energy level. The coordinates are scaled with
the magnetic length, which for B=0 T is ¢ = 13 nm.
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Chapter 5

Far-infrared absorption

We wish to investigate the collective excitations of a quantum dot, when subject to far-
infrared irradiation. In this chapter, the FIR response of such a system will be found within
the self-consistent linear response regime where the external disturbance is assumed to be
small in magnitude. Expressions for the dielectric tensor (section 5.1) and the power
absorption (section 5.2) will be obtained.

5.1 Dielectric response

The FIR absorption is found by a self-consistent method in the linear response
regime. The approximation is called the time-dependent Hartree approximation.
The self-consistency is obtained by assuming that the perturbation is not only the
bare applied potential, but the total (self-consistent) electrostatic potential (see
[17, 18])

8 = 1+ 0, 6.1)

where ¢ is the induced Hartree potential due to rearrangement of the electrons.
It is a functional of ¢*¢ and not only ¢***. Due to this assumption, the approxima-
tion is sometimes called a random-phase approximation (RPA). The self-consistent
potential ¢*¢ is found as a linear response to ¢¢**. The induced Hartree potential is

o) =~ [ ar e (5:2)

~ 4me,€ r—r'|’
2

where —edn, is the induced charge density.! The applied potential is assumed to
depend harmonically on time

8V (r,t) = 6V (r) exp(—i(w + in)t), n— 0", (5.3)

INote that the term “potential” is used both for ¢ and V = —e¢. Even if not correct, we will
use it, since it can always be seen from the context what the meaning is.
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where 6V is assumed to be small. The density operator is written as

p(t) = p° + dp(t), (5.4)

where

p = p(t = —c0) = f(H) (5.5)

and f is the Fermi distribution. The perturbation is thus assumed adiabatically
turned on. The equation of “motion” for the density operator is

ihp(t) = [H'(2), p(t)]; (5.6)
where
H'(t) = H + 6V (t).

Schrodinger’s equation
H|¥,) =e,|V,)

has already been solved (chapter 4) and the states, 4, are the interacting energy

states. The equation of motion is solved in a linear approximation with respect do
oV,

ihp(t) = [H, p(t)] + [0V (1), p°)]- (5.7)
Since

p0|\I}a> = f(H)|\IJa>

the matrix elements of the density operator fulfill the equation

ii6pap(t) = (ea — €6)0pap(t) + (LallOV (2), ]| W)

= (ca = 2)0uslt) + (g — )WV )W), O

This is a first order differential equation with respect to ¢ which can easily be solved
with a Fourier transformation. With the definition

+oo
/ dw'e™ ™ R (') (5.9)

—0oQ

1

"o

F(2)

of the Fourier transform for a function F', this gives

1 ng—n
605 A B a
Pas () h{w’-l—(wg—wa)—i—in

}27r5(w' W) (W |6V W), (5.10)
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where w, := &,/h, and

1 ng — Ny
0pas(t) = =
pes ) h{w+(wﬂ—wa)+in

}(\lra|5V|\1:5)e—iwt+"t. (5.11)

dpap(t) depends harmonically on ¢ as well as 6V/(t). With

3pap(t) = Opap(w)e ™, (5.12)
we have thus
1 ng — Na
Q =z s \Ija \Il 1
Spes() = 1 Sl (Rl 1) (5.13)

e ng — Nq

ﬁ{w—l— (wg — wq) +1n

$(Wal g w5). (5.14)

In order to have self-consistency, ¢°*" in eq. (5.14) is replaced by ¢*, i.e. the pertur-
bation is assumed to be the total electrostatic potential, ¢*¢, rather than ¢®**. This
leads to

1 ng — Ng
Opap(w) = h{w—i- (wg — wa) +1in

With the definition

H=e)(Wald | Ws) + (Wal 65 5)).  (5.15)

) = %{w—k (SZ:ZS)HU} (5.16)

and the short hand writing

¢aﬁ = <\I]a|¢|qjﬁ>a

we have

5pap(w) = —ef* ()95, (5.17)

It will now be shown how ¢%¢ depends on ¢*¢. We write the induced density as

on,(r, 1) = dn,(r,w)e Wi (5.18)

and evaluate on,(r,w);
dns(r,w) = Tr(6(f —r)dp(w)) (5.19)
= 340,60 — 1)3p() ) (5.20)

=3 / dr' (T, [F) (/|6 (F — 1) W) (Usl0p(@) W) (5.21)
dyy

=D V(1) U5 (r)0ps, (w)- (5.22)
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Here, the closure relations

D W) (W] =1,
5

/dr'|r')(r'\ =1,

were used. By inserting (5.18) and (5.22) into the expression (5.2) for the induced
Hartree potential, and writing

Zl,daﬂ (I‘, t) = Zl,daﬂ (I‘, w)eiiWH—"ta
we obtain
. 1
Has(w) = — Z Hop 5,0 psy(w), (5.23)
8,y
where

2

Hapsy = — / drxp;(r){ / dr'w}\ﬂﬁ(r). (5.24)

Adme € Ir —r/|
R? R?

With use of (5.17), we have

=" Hap gy 7 ()55, (5.25)
oy

which shows explicitly the dependence of ¢%*¢ on ¢*¢. Equation (5.1) then reads

=0+ Y Hapor /7 ()85 (5.26)
0y
or
> {(me — Hapoy f ‘57(w)}¢fs§ = dag- (5.27)
dyy

This relation defines the dielectric tensor. As an analogy to
eE=D

(E the total electric field and D the external field), the dielectric tensor elements
are defined as [17, 18]

€aoy(W) = Oas.8y — Hapoy /7 (w). (5.28)

For a given ¢°**, we can calculate ¢°¢ via e !. For a weak external perturbation, the
general excitation spectrum can be found by determining the roots of

det e(w) = 0.
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5.2 Power absorption

The equation for the power absorption is given with

P(w) = %éR / [53(r,0) - (B(r,))" e, (5.29)

where E*¢ is the self-consistent field; it is the total electric field experienced by the
electrons. This is the Joule heating of the system. The equation has already been
Fourier transformed with respect to time, using the definition (5.9). 6J(r,w) is the
induced current caused by the external disturbance ¢*¢. The total electric field E*¢
is simply the negative gradient of the self-consistent potential:

E*“ = —V¢*“. (5.30)
By using the following identity from vector calculus
V- ((¢%)76d) = V(¢™)" - 63 + (¢*)"(V - 0J) (5.31)

and equation (5.30), the integral in equation (5.29) can be written as
= [ 63,0) V(8 r.0))dr = [ (6% (r,0))(V - 530 ))ar

(5.32)
- /V - ((¢*(r,w)) 0J(r,w))dr.

One can now choose
0J(r,w)=0  for r>R, (5.33)

where R can be extended into the region far from the dot, where the wavefunctions
are negligible. This is possible since the quantum dot system we are investigating
is a limited system in size. Let A be the area which satisfies r < R. By Gauss’s
theorem, the last integral in (5.32) is

/ V- ((6°°(r,w))"83 (r, w))dr = /6 (6" () 83 (r,) - (5.34)
and is therefore equal to zero according to condition (5.33). We thus have
/ 5 (r,w) - V(6" (r,w))"dr = — / (6°(r,0)*(V - 63(r,w))dr.  (5.35)
R2

R2

Equation (5.29) can now be rewritten as

Plw) = %m{ / (6°(x. )" (V - 83(x,w))dr }. (5.36)
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We now wish to express V- 90J in terms of the induced density through the equation
of continuity

_68((5n3)

5 (r,t) +V-6J(r,t) =0, (5.37)

where dng(r,t) is the induced electron density. The equation of continuity only

includes the induced density, since it is the only part of the density depending on
time. In (r,w) space, it reads

tewdn,(r,w) + V- §J(r,w) = 0. (5.38)
The power absorption thus becomes
Pw) = 23] / (6°(x,))0n,(r,0)dr (5.39)
where we have used the property
R(iz) = =S(z) for zeC.
The integral in eq. (5.39) can be expressed as
/ (6°(x, )"0y (r, w)dr = / erw* (6% (2, )" Ws(x) (—ef (), (5.40)

Z fﬁa sc*)¢ﬂa’ (541)

with help of eq. (5.22) and (5.17). This leads to

P(w) = _22“)%{ Y W)
ap

S5, 2}, (5.42)

where the identity

(0a5) = (P5a)"

has been used. Eq. (5.42) shows explicitly that when n = 0, there is no power
absorption, simply by writing f%*(w) (defined in eq. (5.16)) as a real and imaginary
part. When no damping is involved, described here by 7, no power is lost in the
system. Equation (5.42) is sometimes seen in the form

—%w

Plw) = =283 fraw) o) o ) (5.43)

2
a,p
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as if E*¢ had been replaced with E¢**. To show this, we will start with the expression

E=E" - ' §J (5.44)

€€, W

and show that it is consistent, with the aid of the equation of continuity, with
Poisson’s equation. We rewrite (5.44) using eq. (5.30)

]

v¢sc — V¢ezt +

53, (5.45)

I,
or
1

V¢ = 6J, (5.46)

€0ErW
where eq. (5.1) has been used. We now apply V and obtain

?

= (—iew)dns (eq. of continuity (5.38)) (5.48)
€0€rW
e
= oe dns. (5.49)

The last one is precisely Poisson’s equation. In addition, equation (5.44), or equiv-
alently eq. (5.46), is the only solution to Poisson’s equation if one requires that
E*d = (0 and 6J = 0 at 7 = +o0.

We now have in equation (5.29)

Plw) = %%/ {(5J(r,w) . (E“(r,w))*}dr (5.50)
= %?R/ {5J(r,w)- (Eewt(r,w) - 6Oz'Tw(SJ(r,u))>*}dr (5.51)
- R / [63(r.0) - (B(r,))" }dr (5.52)

and this leads precisely to equation (5.43).

To simulate the far-infrared response of the quantum dot, the power absorption,
from eq. (5.42), is calculated with the external potential

¢°%t(x, 1) = pore'PMrd=wt), where N, = +1

and ¢ can be assumed to be real and constant. The external electric field is then
spatially constant,

E“" = —¢o (&, + iN,&,)e ™", (5.53)

and E, = iN,E,. For N, = +1, E®* represents a right circularly polarized wave
(clockwise rotation of R(E®") in the (z,y)-plane). If N, = —1 we have a left circular
polarization (counterclockwise rotation of R(E*") in the (z,y)-plane) [19].



Chapter 6

Absorption of harmonic quantum
dots

6.1 Selection rules

For a strictly circular symmetric harmonic dot, the dipole selection rule for the
center-of-mass angular momentum is AM = —N,. For left circular polarization,
there is only absorption into w_ and for right circular polarization, only into w,
(eq. (2.6)) [3|. For an anisotropic harmonic confinement, the selection rule is still
AM = 41, but there is absorption into both w, and w_ for each polarization. The
resonance frequencies are then given by (see eq. (2.8))

s Witwltw?dwh+2wi(wk+ W)+ (W - w22
W2 = . . (6.1)

where w, and w, are the resonances at B = 0 T. In particular, the intensity ratios
of absorption can be obtained [2]

f- W_ 2wy — W, .
= gaﬁ for N,=+1 (B, =+iE,), (62)
- c
where
wa — wy
gy = 3
Q(w_ — Wew_ — w%;w’%>
and
f Wi 2wW_ +w .
S
— — C
where
Wl — w?
Ga =
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For an isotropic harmonic confinement, w, = w, and thus g, = 0 = g, as expected.

The absorption was calculated with a small finite constant value of 7 (= 0.05%wy,
where fiwg = 3.37 meV). A finite value of 7 produces finite linewidths of absorption
peaks (a phenomenological Lorentzian line broadening).

6.2 Circular parabolic dots

The excitation spectrum of a two electron circular parabolic dot was calculated.
The results are shown in Figure 6.1. The generalized Kohn theorem was never used
explicitly and mixing of all angular quantum numbers, M, within the truncated
basis chosen, was allowed. Even so, Kohn’s theorem is fulfilled and the resonance
frequencies are in accordance with the theoretical equation (2.6).

Absorption
80 r
60
40
20

Figure 6.1: The power absorption of a two electron circular parabolic dot for N, = +1
(upper branch) and N, = —1 (lower branch). The resonance frequencies are fitted to
eq. (2.6). Kohn’s theorem is fulfilled.
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6.3 Elliptic dots

Model calculations of power absorption

The power absorption of two electron elliptic quantum dots was found for both
right and left circular polarization of the incident wave. The results are shown in
Figures 6.2 (o = 0.2) and 6.5 (a; = 0.4). For a given external magnetic field, two
peaks appear for each polarization. This truly agrees with the generalized Kohn
theorem for elliptic quantum dots (section 2.3). The two branches are plotted in the
figures, according to eq. (6.1). The intensities of absorption for the resonance peaks
were found from the data in Figs. 6.2 and 6.5. Figures 6.3 and 6.4 show the intensity
ratios found from the data, compared with equations (6.2) and (6.3) where w are
found with equation (6.1). The data fits well to the theoretical curves. The model
used in the calculations, as discussed earlier (section 3.2.3), allows for mixing of all
angular momentum quantum numbers, M. As in section 6.2, the generalized Kohn
theorem has never been used explicitly but the results of the model calculations,
both for the resonance frequencies and the intensity ratios, show that it is fulfilled.

Other model calculations

Few model calculations have been made on elliptic quantum dots. In addition to
a proof of Kohn’s theorem for anisotropic harmonic quantum dots |2, 13|, mostly
ground state calculations have been performed. Ezaki et al. evaluated in [20] the
addition energy of circular, elliptic, and triangular quantum dots at zero magnetic
field. They diagonalized the N-electron Hamiltonian in a truncated basis, with the
Coulomb interaction for N = 2 — 12, obtaining clear peaks in the addition energy
spectrum of circular and triangular dots, where the dots have a complete shell filling
structure, but for elliptic dots the peak structure is lot less clear. They explained it
to be the result of a splitting of the degenerate eigenstates, and also due to mixing
of various eigenstates with different angular momenta.

Madhav and Chakraborty calculated analytically the energy levels of a single-
electron elliptic quantum dot [21]. Qualitatively, the energy spectrum is similar to
what is found here. They calculated the energy levels of a two electron circular
parabolic quantum dot by assuming an inter-particle potential of non-Coulombic
form V(r) o« 1/r%. Most of the analysis can then be performed analytically. The
energy levels of a two electron elliptic quantum dot were found by perturbation
calculations, assuming that the anisotropy is small.

Far-infrared measurements on elliptic quantum dots

Claus Dahl measured absorption of many electron elliptic dots with a major axis
wy = 116 pm and a minor axis w, = 40 pum [22]. They are relatively large such
that the resonance frequencies lie in the sub-millimetric range. The measurements
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were in accordance with the expected behavior of elliptic dots and the predictions
of Kohn’s theorem.

Elisabeth Vasiliadou reported FIR measurements in [23] on elliptic dots with
w,; = 320 nm and w, = 85 nm and fixed gate voltage V, = —0.3 V (fixed electron
number). An anticrossing occurs in the vicinity of B = 1 T, reminiscent of a square
symmetric confinement discussed in the next chapter. Resonance frequencies at
B =0T and 4 T were measured as a function of electron number (V, € [—0.4;0.0] V)
and unpolarized incident light.

Markus Hochgréfe reported in his diploma thesis [5] FIR measurements on an
array of elliptic dots. The dots had a major axis w, = 600 nm and a minor axis
wy = 400 nm and measurements were performed with 8, 48 and 82 electrons per
dot. For 8 electrons per dot, the results fit to the expected resonance frequencies
of an elliptic dot and Kohn’s theorem holds. However, for 48 electrons per dot, one
anticrossing occurs and several for 82 electrons per dot. Probably, the confinement
potential is no longer parabolic, due to screening.

Bernstein modes were also observed |7, 24|. They appear as an interaction, at or
near the crossing of a dot (or quantum wire) modes with harmonics of the cyclotron
frequency; 2w, 3w, ... For 48 electrons in a dot, an interaction with 2w, occurs,
and with 2w, and 3w, for 82 electrons.

In this chapter, we have seen that the calculations are in agreement with the
predictions of the generalized Kohn theorem. The FIR radiation couples only to the
center-of-mass motion of the electron system. For quantum dots subject to a square
symmetric confinement potential, the theorem no longer applies. In the following
chapter, absorption of such quantum dots will be investigated and evidence of the
interaction in the absorption will be discussed.
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Absorption

B[T]

Absorption

Figure 6.2: The excitation spectrum for N, = —1 (above) and N, = +1 (below). The
resonance positions are plotted according to eq. (6.1) with fuww, = 3.70 meV and hw, =
2.98 meV. a1 = 0.2.
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Absorption of harmonic quantum dots
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Figure 6.3: The ratios of intensity of absorption for both polarizations as a function of
the magnetic field. The deviation coefficient is a; = 0.2. The theoretical curves are plotted
with hw, = 3.70 meV and hw, = 2.98 meV, the energy resonances at B =0 T.
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Figure 6.4: The ratios of intensity of absorption for N, = 1 and a; = 0.4 as a function
of the magnetic field. The theoretical curves are plotted with 7w, = 4.13 meV and hw, =
2.75 meV, the energy resonances at B =0 T.
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Absorption
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Figure 6.5: The excitation spectrum for N, = —1 (above) and N, = +1 (below). The

resonance positions are plotted according to eq. (6.1) with Aw, = 4.13 meV and fw, =
2.75 meV. a; = 0.4.



Chapter 7

Absorption of quantum dots with
square symmetry

For quantum dots subject to a square symmetric confinement potential, we are out of the
range of the generalized Kohn theorem and it should be possible to observe evidence of the
interaction in the absorption spectrum. We will focus our attention here on the absorption
of two electrons. The evolution of absorption peaks at B = 0 T, as a9 is increased, will be
shown. The induced density for a pronounced square symmetric confinement (ay = 0.40)
at B =0 T is used to identify the relative motion of the electrons. Excitation spectra for
as = 0.20 and 0.40 will be discussed.

7.1 The power absorption and the induced density
at zero magnetic field

The power absorption at B = 0 T for increasing square symmetric deviation from
the circular parabolic confinement is shown in Fig. 7.1. For small ap (< 0.1) the far-
infrared radiation couples only to the center-of-mass motion and one absorption peak
occurs, as in the isotropic harmonic confinement. For larger as, the square symmet-
ric confinement starts to show up in the absorption spectrum. A new peak occurs
for ai, = 0.10 which increases in oscillator strength with increasing aw, whereas the
“center-of-mass” peak decreases at the same time. They have almost equal strength
for ay = 0.40. To understand better the behavior of the electron system at B =0T,
when exposed to the FIR radiation, it can be useful to look at the induced density.
We write it to be

ons(r,t) = dn,(r, w)e (7.1)

as in eq. (5.18), where

ons(r,w) Z\Il* (r)6psy (w). (7.2)
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By convention from electromagnetic theory, the induced density is evaluated as
R(0ns(r,t)). We choose t = 0. The induced density at the absorption peaks for a
strong square symmetric confinement (o = 0.40) is shown in Figure 7.2 for N, = —1.
A simple dipole is induced at £ = 2.38 meV, reflecting an almost pure center-of-mass
motion. The absorption peak is however weak in oscillator strength. The motion
induced is the lowest mode of oscillation of odd parity. Modes of even parity are
not excited, due to the parity of the external potential. The next lowest mode of
oscillation is induced at 3.15 meV, showing the relative motion of the electrons. The
motion induced at 3.99 meV seems to be of a rather circular kind.

Absorption

E [meV]

Figure 7.1: Evolution of absorption peaks at B =0 T as «y is increased for left circular
polarization (N, = —1). For az = 0.05, one peak occurs, as in the circular parabolic
confinement (coupling of the FIR to center-of-mass motion). For ap > 0.1, the effect of the
square deviation becomes evident. An extra peak occurs which increases with increasing
ay. At the same time, the oscillator strength of the “center-of-mass peak” decreases.
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7.2 Excitation spectra

The power absorption was calculated as a function of energy of the incident wave
(E = hw) and magnetic field (B) for ay = 0.20 (Fig. 7.5) and ap = 0.40 (Fig. 7.6).
The corresponding frequency dispersions (position of resonance peaks as a function
of B) for both polarizations are shown in Figure 7.7.

To see whether there are transitions for which the incident light couples only to
the center-of-mass motion, one must look at the non-interacting Darwin-Fock (DF)
spectrum. The energy for which such transitions occur will then coincide with an
energy difference of an energy level of the non-interacting spectrum and its lowest
level for a given B. For as = 0.20, this comparison of the DF spectrum and the
frequency dispersion (resonance frequencies as a function of B), showed that the
lower branch for N, = —1 converges asymptotically to a “center-of-mass transition”.
For N, = +1, the lower branch for B ~ 0.1 — 0.3 T seems to exhibit center-of-mass
behavior.

The higher branch for N, = —1 and ay = 0.20 decreases rapidly in oscillator
strength as B increases and vanishes at approximatively 1.0 T. It can be identified as
a one electron transition with many-body effects, by comparison to the interacting
DF spectrum. It corresponds to the energy difference of an energy level and the next
lowest level, There are two electrons in the dot, such that the two lowest levels are
occupied. However, the transition occurs at a higher energy by ~ 0.7 meV than the
energy difference of the DF spectrum predicts. This is the so-called depolarization
shaft. It originates in the fact that when one electron is moved, the other electrons
move also, due to the Coulomb interaction. This many-particle behavior requires a
somewhat higher energy for absorption to occur.

Another such transition, low in oscillator strength, occurs in the higher branch
for N, = +1 when B ~ 0.4 —0.8 T. It is seen in the interacting DF spectrum as the
energy difference (with a depolarization shift) of one energy level and the lowest one.

If we consider now the stronger square deviation from the isotropic harmonic
confinement, as, = 0.40, some coupling to the center-of-mass motion is still seen.
The lowest branch for N, = —1 converges asymptotically to a “center-of-mass reso-
nance” with increasing B, as in the case of ae = 0.20. Also, the middle branch for
N, = +1 is a center-of-mass resonance in the range 0.5-1.9 T. A somewhat similar
behavior was seen for ay; = 0.20 but it was “disturbed” sooner by the anticrossing,
discussed later in this section. The lowest branch for N, = +1, weak in oscillator
strength, is a one electron transition for B=0.3-0.8 T, with a depolarization shift of
approximatively 0.7 meV.

Anticrossing behavior shows in the excitation spectra for both a; = 0.20 and
0.20 and right circular polarization (N, = +1). Its origin shows already in the
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single electron energy spectrum, leaving its trace in the interacting spectrum. The
square symmetric term of the deviation confinement, cos(4¢), couples the states
(M,n,) = (+1,0) and (—3,0) (see section 3.2.2). Those are accidentally degenerate
for the isotropic harmonic confinement, at B ~ 2.3 T in the non-interacting case, but
the coupling lifts the degeneracy. This leads to the anticrossing at this magnetic field
(see the left figures in Figs. 7.3 and 7.4). For two interacting electrons, anticrossing
also appears but shifted to a lower magnetic field. Figures 7.3 and 7.4 show this
anticrossing behavior at B ~ 1.4 T; shifting to lower magnetic fields due to the
Coulomb interaction has already been pointed out in [25].

For the stronger square symmetric deviation, ap = 0.40 (Fig. 7.6), the highest
branch can be traced as a one electron transition with a depolarization shift of
approximatively 0.7 meV, whereas for the weaker deviation, apy = 0.20, the excitation
has the characteristics of a center-of-mass motion with however some many-body
effects.

7.2.1 Observation of anticrossing in other model calculations
and experiments

Effects on excitation spectra of a square symmetric deviation from a parabolic con-
finement potential were found in [25] by D. Pfannkuche and R. R. Gerhardts. They
performed exact calculations on a two electron quantum dot, where the deviation
confinement was taken to be of the form

1
Ur) = 5771*@02((17‘4 + bx2y2),

i. e. both a circular symmetric and square symmetric term. An anticrossing behavior
was found for @ = 1 A2 = b whereas no anticrossing occurred for ¢ = 1 A=2 and
b= 0. It is thus due to the 22y? confinement term.

Anticrossing has also been observed experimentally for square quantum dots, by
Demel et al. [8] for 25 and 210 electrons per dot. The anticrossing effect is seen,
even in quantum dots with a weak square symmetric confinement, as is the case in
these calculations and experiments.
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Figure 7.2: The induced density at the absorption peaks for N, = —1. See discussion in
text.
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Figure 7.4: Darwin-Fock spectra for ag = 0.40, non-interacting (left) and two interacting
electrons (right). Anticrossing occurs at B = 2.3 T in the non-interacting spectrum and
in the vicinity of B = 1.4 T for the interacting electrons. The chemical potential is given

by the solid line.
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Absorption

Absorption

Figure 7.5: The power absorption for as = 0.20 as a function of energy of the incident
wave (E = hw) and the magnetic field B. The absorption for left circular polarization,
N, = —1, is shown in the upper figure and right circular polarization, N, = +1, in the
lower one.
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Figure 7.6: The power absorption for as = 0.40 as a function of energy of the incident
wave, ¥ = hw, and the magnetic field B. The absorption for left circular polarization,
N, = —1, is shown in the upper figure and right circular polarization, N, = +1, in the
lower one.
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Chapter 8

Conclusions and summary

In this work, the absorption spectra of interacting electrons in a quantum dot,
described by circular parabolic, elliptic or square symmetric confinement potentials,
in a magnetic field perpendicular to the 2DEG, have been calculated. The attention
has been focused on two interacting electrons.

The confinement potential was written as a circular parabolic potential, suitable
to model circular quantum dots, and a multipole expansion in two dimensions, with
high symmetry, modelling elliptic, square symmetric, hexagonal, ... quantum dots.
The multipole expansion of the confinement breaks the circular symmetry which
means that the angular momentum is no longer conserved. The model calculations,
performed in the basis of eigenfunctions of the circular parabolic potential, thus
required mixing of all angular momentum quantum numbers, M. The matrix ele-
ments of the confinement potential, and the Hartree potential for the interaction,
were evaluated analytically. The maximum values of M and n, had to be chosen
carefully in order to minimize CPU time and maximize the precision.

To emphasize the difference between the circular parabolic confinement and a
confinement that breaks the circular symmetry, it should be noted that the Coulomb
interaction does not mix M in the circular parabolic case, whereas it mixes M even
further in the latter case, such as to “recover” in a sense the circular symmetry, i. e.
screening effects.

From the calculations, we have seen that the generalized Kohn theorem is ful-
filled for a harmonic confinement potential, both circular symmetric and elliptic,
and the FIR radiation excites only the center-of-mass motion of the system. Kohn’s
theorem was never assumed to be valid, and yet, the calculations show that it is
fulfilled. However, for the square symmetric confinement potential, the interaction
is involved in the absorption and relative motion of the electrons is induced. Kohn’s
theorem is no longer fulfilled. The induced density at B = 0 T revealed relative
motion of the electrons. Also, the resonance frequencies of the absorption did not
correspond to the energy differences of the single electron energy levels and the low-
est level, except for isolated cases. Such correspondence for all the transitions would
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show that the only motion induced is a center-of-mass motion. The absorption spec-
trum includes, in addition to some “center-of-mass transitions”, several absorption
lines which could be identified from the energy spectrum of interacting electrons as
one electron transitions with a depolarization shift, which shows clearly their many-
electron character, i. e. interaction effects.

Geometrical effects, identified here in the absorption spectra, such as the anti-
crossing phenomenon in the square symmetric confinement potential and the split-
ting of absorption lines at B = 0 T for elliptic dots, have been observed in experi-
ments. A splitting at B = 0 T for a strong square confinement, as found here, has
however never been observed.

The model described in this thesis is quite general and yet it allows for several
extensions. The ground state calculations (i. e. before the infrared light is exposed
to the system) could be improved by including the exchange part of the Coulomb
interaction via the Hartree-Fock approximation, and to include the electrons’ spin.
The model of the power absorption allows for adding electrons to the dot. This in-
volves however increasing the basis to obtain the same precision as for two electrons
and program size grows rapidly with electron number. If there were more powerful
computers ... The magnetization of the system can be calculated, from knowledge
of the energy spectrum of interacting electrons. A repulsive Coulomb potential can
be added, describing an impurity in the middle of the dot, to investigate its effect
on the absorption spectrum. Such quantum dots have been realized experimen-
tally. Finally, interesting phenomena could occur by calculating the absorption for
a confinement potential with an elliptic and a square symmetric confinement term.
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Appendix A

Matrix elements

A.1 The matrix element (®;|V,|®;)

We wish to evaluate the matrix element of the deviation confinement

(@V5/) = [ e Va)8i(x)

R2
We write the basis functions (3.3) as
O(r) = x(r)e”™M?, (A.1)
where r = |r|. By writing ¢ := (M, n,) and j := (N, m,), the matrix element
becomes
27 400
(CIJj|V¢|(I>z->:/d(/ﬁ/drrxj(T)eiN¢V¢(r)Xi(T)e_iM¢. (A.2)
0 0
The deviation confinement is
1 pmaw
Vy(r) = 5m*w§r2 Z o, cos(2pg), (A.3)
p=1

such that integration over the angle, with the definition AM := M — N, gives

pmaw 27]_ pmaa)
> o / dge™ "M% cos(2pg) = Y cpmlarp + Oan,-2p) (A.4)
p=1 0 p=1

We have thus obtained the selection rule

AM = £2p.
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In view of this selection rule, one can explain lifting of degeneracy of energy levels
when the deviation confinement is added to the circular parabolic confinement, if
the deviation is small enough. Degenerate states, for which AM = +2p, are coupled
and the corresponding degeneracy is lifted, as can be explained with perturbation
theory. This is discussed in sections 3.2.1 and 3.2.2 for elliptic and square symmetric
confinements. This yields

max

OV P 1,5 ny! 1/2 m,! /25, 5 5
(@;|Vy] i)-gm wo(m) (W> ;%[ AM2p T 0an,—2p]
+2o 2\ ML psar (T2 a7
2 —r2/2a N
X/”ﬁ%ﬁ eI (e ) o (5 )

0

Change of variables,

O
202’ a2’
yields
1 n,! 1/2 m..! 1/2
S|V, |®,) = —m*w2a2(7T> (7’")
(®alVel = gmeas ) TN+ m)
pmam
X Z ap[éAM,Qp + 5AM,72p]InTa
p=1
where

+00
I, = /d:cxN|+2|M+le_zL|Tﬁ|(x)L|nAf|(x).

T

0
We have the relation (8.975.1 in [26])

_xt_
+o00 e 1t

M r —
3 LM(z)em = DL It <1,

nyp=0

which can be used to evaluate I,,,. This gives

<= o N |+ M]

Z I, t" = Z " /x2+lewLa|(x)LLﬂ:[|(x) dx
n,=0 ny,=0 0

o (A.5)
1

_ w2y
—W/x 2 e 1 tL‘mT|($)d£E
0

F(M + 2>F(\N| +m, +1)
m!T(IN|+1) (A.6)
x F(—mp; M4 9 N| 41,1 - £)

= (1— )"



62 Matrix elements

The last relation is given in [26]. The function F is the hypergeometric series (see
e.g. |26]) which is in this case a polynomial of order m, in (1 —¢). The right hand
side of equation (A.6) is therefore a polynomial of order

[N| = [M]

my+ o + 1

n (1 —t), which can be re-expressed as a polynomial of the same order in ¢. This
yields the selection rule

N|—|M
< NI "
Since, physically, n, > 0, we require that
[N — M|
5 +1>0

which is acquired if | N| > |M| (a stronger condition than necessary). I, is however
independent of this choice (the interchange (M,n,) + (N, m,) yields the same
integral). To evaluate the integral over r for |M| > |N|, we simply interchange
(M, n,) and (N, mr). By writing expression (A.6) as a polynomial in ¢, we obtain

my+l my
In,t"r = ax (=1)mr g (A.8)

ny,=0 ny=0 k=0
where
IN| - |M]|
2

[ = +1

NHM] 11 4 k) (IN| + m,)!
(m.— k)t (IN| +k)!

ar = (—1)k (

Comparison of the coefficients in (A.8) then gives that
o [(k+1
I, = E —1)™ A9
' k=0 ak< Tor >( ) (A-9)

Within some algebraic steps, we have the expression for the matrix element *

1 max
(®;|V,s|®; Loy ml (N[ +my)! 3 5 5
J ¢| Z> - 2m Woa n '(|M| +n )| E :ap[ AM72P+ AM,*QP]
T r): =1

Sopapn (S5
k! (me — k) (IN]+ k) (MM L 41— )1

(A.10)

The condition, |[N| > |M]|, assures that the quantity on the right side of (A.10) will
always be convergent.

'Remember however that = n), =0, n=12,..
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A.2 The matrix element (®y|Vy|P;)

The Hartree matrix element is given by

(k|Vi|l) =/dr<I>,’;(r)VH(r)<I>l(r) (A.11)
= 4;;0 / drcb;;(r)[ / dr"ZS_(r;)IJ(I)l(r). (A.12)

1/|r — r'| can be rewritten [27] as

Z eim(é—¢) / dk (k) T (k") (A.13)

|r —r \ =
0
where J,, is a Bessel-function of order m and r = |r|. The matrix element then
becomes
(klVarl) = - /d P (r /dr m;)oezm@ #) / A T (k) Jon (ks ()| 1),
(A.14)
We then write the basis functions as in section A.1
®(r) = x(r)e M2, (A.15)
The integration over ¢ gives
/ " dpemHE-L¢ — ons, 1 k. (A.16)
0

For given L and K, only one term in the sum over m is non-zero, namely m=L-K.
In order to perform the integration over ¢’, we rewrite the electron density in terms
of the basis functions;

= Zf(€a)\‘1’a(r’)l2 (A.17)
_Zf €a anpcaqu* D, (r " (A.18)

pPq

:Z F(€a) Y Caplaq®}(r) By (r') (A.19)

pq

=: Zfaanpcaqxp )eM xo(r')e "IN (A.20)

p,q
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We have dropped the asterisk on c,, and x,(r) since they are real quantities. The
definitions

fo = f(ca) (A.21)
p = (M,n,) (A.22)
= (N, m,) (A.23)

have been used in order to compactify the notation. Integration over ¢’ is then
readily performed

2w
/ d¢lei(M—N—(L—K))¢' = 260N LK (A.24)
0
This gives
+oo
k[Vall) = S Capta / k| [ drrxelr) o]
0
P
(A.25)
+o0
X [/ dr'r'xp(r')JM,N(kr')Xq(r')](5M,N,L,K. (A.26)
0
Put
L T |K| 2 |K\ 2
xi(r) = B (2) exp(—r?/4a’) L (1), (A.27)
with
1 k! 1/2
= - A2
= g, GarT ) (4.25)
and similarly for the other wavefunctions. This gives
<k|VH|l> - (2 ) 4 ﬂkﬁlZfa%capcaqﬁpﬁqéM N,L-K (A29)
+00 +00 |K|+|L| ) \K| 2 1L
X/o dk[/o drr(a) exp(—r?/2a*)L, (2 2)Llr (2 )JL K(kr)}
(A.30)
oo |M|+|N| 9 2
11 ! | M| |V
X [/0 dr <a) exp(=r /2a )L (2 2)L (Za )JM N(kr)]
(A.31)

The Batemann manuscripts [28] give the solution to this type of integrals but only
with the restriction that K and L (M and N) need to be of opposite sign. To obtain
a general answer, we rewrite the Laguerre functions as polynomials

() =2 G () 0 a3
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The matrix elements then transform into

Iy Ny My

knr n+>\+u+u
ﬂkﬁl Z fa Z CapCaqlplq Z Z Z Z ,{l)\u,,v

Psq k=0 A=0 v=0 u=0

kr+\K| lr+|L| ne + |M|\ (m, + |N|

k., — Kk I, — A Ny — UV m, — i

+oo N\ | K|+ L+2(k+X)
/ 2'€+)\ / drr(a) exp(—r2/2a2)JL_K(kr)]
|M|+|N|+2(v+u) 9
11 ! 2 !

v [/0 dr <a) exp(—r'""/2a*) Jp—n(kr )]

(k[Vall) = (27

We have that [26]

oo |K+IL]+2(k+2)
/ drr(g) exp(—r?/2a®)Jy (k)
0

|K|+|L|+K-L

_ o KIHEHEEL p o X (1 LK 2F(L7K+£K‘+|L| +r+A+1)
=2 (ka)™ e T(L—K+1)

L-K+|K|+|L k2a?
><1F1< +2| [+ |+n+A+1;L—K+1;—Ta),

where 1 F} is a confluent hypergeometric function, defined on p. 1085 in [26]. The
integral over 7’ is of the same kind;

+00 I\ |M|+|N|+2(v+p)
[ a (%) " exp(=1"%/26%) Jusn (k')
0 a

[M|+|N|+N-—M

M—N+|M|+|N
e O 2 g
T —N+1)
M—N+|M| +|N 242
><1F1( +2| [+ |+1/+,U+1;M—N+1;—k2a>.

With the redefinition

k! 1/2
— (27)1/22'% =(—
Y 1= (27) o/ (Q}(|+—krﬂ>
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and with aid of the selection rule L — K = M — N, one obtains

kr lr Ny My n+)\+l/+u
(k|Vi|l) = ’)’k’}/lZfaZCapcaq’Yp’Yqzzzz Ky)\lyl
D,q k=0 A=0 v=0 pu=0

y kr+|K| l,~+|L| ne + |M|\ (m, + |N|
kr — Kk . — A Ny — VU My — I

F(L—K+£K|—HL\ TR 1) F(M—N+|2MH-|N\ +U+pu+ 1)

X

I'L—-K+1) I'(M—-N+1)
+o0 ]€22 L—-K I - K K L k‘22
x/ dk( ) 1F1( +2‘ ] AL L—K4+1i— 2“)
0
M —N M N k%a?
><1F1( +2| [+ |+I/+M+1;M—N+1;— 2a )

This last integral can be evaluated analytically, giving a hypergeometric function
of several variables (definition p. 1084 in [26]). This is achieved by writing 1 F} in
terms of a Whittaker function, M) ,, via the relation

1
My, (z) = a3 22 Fy(u— A+ 3 2u+1; )
and we also have

1Fi(a,vs2) = e"1 Fi(y — o,y =),

The integral can then be evaluated from 7.622.3 in [26], giving the hypergeometric
function F, of several variables. This function is however not very practical in use.
Therefore, it has been chosen to evaluate the integral over £ numerically.
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