Magnetization of confined and extended 2DEG's

Viðar Guðmundsson Science Institute University of Iceland Dunhaga 3, IS-107 Reykjavík

vidar@raunvis.hi.is

20th September 2000

Cooperation

Reykjavík:

- ullet Ingibjörg Magnúsdóttir ightarrow COM Copenhagen
- ullet Sigurður I. Erlingsson o TU Delft
- ullet Andrei Manolescu ightarrow deCode Reykjavík

Hamburg:

- Detlef Heitmann
- Dirk Grundler
- Ines Meinel

Why magnetization?

- The electron state in a system is measured by FIR-absorption, tunneling, Raman-scattering, magnetization, and transport...
- FIR-absorption excites mostly center-of-mass modes, correlation effects block tunneling spectroscopy
- Magnetization is not limited by selection rules...
- In magnetization many-electron effects are seen...
- Direct access to the ground state
- Valuable addition, good experiments...

Magnetization

Magnetization is defined in terms of current- and spin-density:

$$M_o + M_s = \frac{1}{2} \int_{\mathbf{R}^2} d\mathbf{r} (\mathbf{r} \times \langle \mathbf{J}(\mathbf{r}) \rangle) \cdot \hat{\mathbf{n}} - \mathbf{g} \mu_{\mathbf{B}} \int_{\mathbf{R}^2} d\mathbf{r} \langle \sigma_{\mathbf{z}}(\mathbf{r}) \rangle,$$

or total energy:

$$M_o + M_s = -\frac{\partial}{\partial B}(E_{\text{total}} - TS)$$

Systems

- Quantum Dots, noncircular
- Finite system, increasing size
- Infinite 2D-systems, 1D modulation
- Infinite 2D-systems, 2D modulation
- Infinite 2D-systems, Hysteresis

Quantum dot, (IM)

Confining potential for electrons in a dot

Density of three interacting electrons in magnetic field

Elliptic quantum dot, magnetization

Effects of increased number of electrons and deviation
Noninteracting electrons

Elliptic dot, energy spectrum

noninteracting electrons

Square shaped dot, magnetization

Effects of increased number of electrons and deviation Noninteracting electrons

Square shaped dot, energy spectrum

noninteracting electrons

Interacting electrons, magnetization

Hartree approximation for interaction

Dots

- Increased $B \to \text{increased momentum of inertia}$, jumps between many-electron states. Magnified by Coulomb interaction
- For few electrons M depends strongly on N, B, and deviation from circular shape
- Clear signature of many-electron states

Finite system, increased in size, (SIE)

 $N_c = n_x \times n_y$ unit cells

Hartree approximation for interaction

$$V_{\rm sq}(\mathbf{r}) = V_0 \left\{ \sin\left(\frac{n_x \pi x}{L_x}\right) \sin\left(\frac{n_y \pi y}{L_y}\right) \right\}^2$$

 $V_0 = -1 \text{ meV}, T = 1 \text{ K}, B = 1.65 \text{ T}, (1 \times \Phi_0 \text{ per cell})$

Without interaction, $N_c = 5 \times 5$

- Interaction is important
- Large system \rightarrow strong screening, except for $N/N_c \approx \nu = \text{integer}$
- \bullet M is similar for weak 1D and 2D modulation
- Bulk contribution is similar to M for an infinite system

Finite 2DEG, 1D modulation, (AM)

(a): Homogeneous 2DEG (HFA)

(b): 1D modulation, $V_0 = 1.5 \text{ meV}$, (HFA)

(c): (b)+disorder: $\Gamma = 2.6 \text{ meV}$

(d): $V_0 = 5 \text{ meV}$

Finite 2DEG, 2D modulation, (VG)

$2D \mod ulation \rightarrow commensurability problem$

- \rightarrow integer Φ_0 through "unit cell"
- \rightarrow Hofstadter energy spectrum
- \rightarrow technical difficulty calculating M[E, T, S, B]
- → Vary electron density, experiment

- In a finite system M[E, T, S, B] and $M[J, \sigma, B]$ are equivalent
- M[E,T,S,B] can be derived in a homogeneous infinite system from $M[J,\sigma,B]$ for a finite system in the proper limit "size $\to \infty$ " w.r.t. the edge
- Without the proper limit $M[J, \sigma, B] = 0$ for an infinite homogeneous system \leftarrow no edge
- In our 2D modulated 2DEG $M[J, \sigma, B] \neq 0$ $\leftarrow \text{modulation} \neq 0$
- Experiment: SQUID-loop inside system!

Hartree-Fock approximation, $pq \times \Phi_0$ in a unit cell

Total energy, pq=2

Magnetization, (cosine modulation)

pq=1 2 fold Landau-bands, (spin), $\nu=2.55$

M_s : Spin contribution HA or UHFA

Bandstructure pq = 2, 4 fold Landau-bands, (2 spin, 2 Hofstadter)

Magnetization pq = 1

Bandstructure pq = 1, 2 fold Landau-bands, (2 spin, 1 Hofstadter)

Noninteracting Bandstructure, (static)

pq = 2, Dot- antidot array, $V_0 = \pm 5$ meV

 $\mathbf{Symmetry} \leftarrow \text{finite } M \text{ only due to modulation}$

- Infinite 2D modulated 2DEG has no boundary
- Effects of edge states is not simple
 - Direct effects on M_e
 - Indirect effects on M_b through self-consistent shape of energy bands
 - Connected to motion of μ through bands

Hysteresis, (AM)

1D modulation, short period: a = 40 nm, $V_0 = 9$ meV, cosine modulation

Sample tilted ϕ , T = 5 K, 7 K

Visible in transport

Short period, strong modulation

 \rightarrow weak screening of exchange force

Results

- Magnetization is promising for investigation of the ground state
- Magnetization of a Hofstadter system?
- Essential to improve and study approximation of the Coulomb interaction
- Magnetization measurements of structured systems