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Collective non-perturbative coupling of 2D
electrons with high-quality-factor terahertz

cavity photons

Qi Zhang!, Minhan Lou", Xinwei Li', John L. Reno?, Wei Pan3, John D. Watson?, Michael J. Manfra*>

and Junichiro Kono®7*

The ive il ion of with light in a high-
quality-factor cavity is expected to reveal new quantum phe-
nomena"’ and find appli ing h

gies®®. H bining a long electronic coh hme,

a large dipole moment, and a high quality-t factor has proved
difficult’®™. Here, we achieved these di

ously ina two-dimensional electron gas in a high-quality-factor
terahertz cavity in a magnetn: fleld The vacuum Rabl spllttlng
of cycl ¥ da q

on the density, ive i ion. This
splitting extended even where the detuning is larger than
the resonance frequency. Furthermore, we observed a peak
shift due to the [} ligible di ic term in the
Hamiltonian. Finally, the high-quality-factor cavity suppressed
superradlam cyclotron resonance decay, revealing a narrow
linewidth of 5.6 GHz. High-quality-factor terahertz
s will enable new experiments bridging the traditional
disciplit of d-matter physics and cavity-based
quantum optics.

nonresonant matter decay rate, which is usually the decoherence
rate in the case of solids. Strong coupling is achieved when the
splitting, 2g, is much larger than the linewidth, (x + y)/2, and
ultrastrong coupling is achieved when g becomes a considerable
fraction of w,. The two standard figures of merit to measure the
coupling strength are C = 4g”/(ky) and g/w,; here, C is called
the cooperativity parameter'*, which is also the determining factor
for the onset of optical bistability through resonant absorption
saturation™. To maximize C and g /@, one should constructa cavity
QED set-up that combines a large dipole moment (that is, large g ), a
small decoherence rate (that is, small ), a large cavity Q factor (that
is, small «), and a small resonance frequency w,.

Group I1I-V semiconductor quantum wells (QWs) provide one
of the cleanest and most tunable solid-state environments with
quantum-designable optical properties. Microcavity QW-exciton-
polaritons represent a landmark realization of a strongly coupled
light-condensed-matter system that exhibits a rich variety of coher-
ent many-body phenomena®. However, the large values of w, and

elatively small dipole moments for interband transitions make it!
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been widely used to behavior of closed few-level Here.
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we show that they also represent a powerful probe for the dynamics of charge ransfer between  discrete
electronic level and fermionic continua. We have combined experiment and theory for a carbon nanotube
quantum dot coupled to normal metal and superconducting contacts. In equilibrium conditions, where our
device behaves as an effective quantum dot-normal metal junction, we approach a universal photon
dissipation regime governed by a quantum charge relaxation effect, We observe how photon dissipation
modified when the dot admittance tums from capacitive to inductive. When the fermionic reservoirs are
voltage biased, the dot can even cause photon emis e to inelastic tunneling toffrom a Bardeen-
Cooper-Schrieffer peak in the density of states of the mp«.n.nmluum" contact. We can model these
numerouseffects qnanmmvely in terms of the charge susceptibility of the quantum dot circuit
This validates an approach that could be used to study a wide class of mesoscopic QED devices

Coupling to external fermionic reservoirs.
Gate voltage excitation, Vig,. . .,
Photon pumping, (N,) ~ 120

FIG. 1. Panels (a) and (b): Scanning electron micrograph of the
microwave resonator and the quantum dot circuit. Panel (c):
Principle of our setup. The dot level is tunnel coupled to the N
and S reservoirs and modulated by the cavity electric field. Panel
(d): Current through the S contact versus the effective gate
voltage V, and the bias voltage V.



Want to model
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Short quantum GaAs wire in a 3D photon cavity
Weak coupling g“Ra3/? ~ 0.124 x (state — dependence) meV
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Time-dependent transport
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Time scales
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( Transient — intermediate — long time — steady state ]
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Density operator
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Equation of motion

Liouville-von Neumann

7
h
H = Hg+ Hir + HT(t), Hg = H. + Hgm

OW =LW, LW =——[H W]
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Stepwise exact numerical diagonalization, (Fortschritte der Physik 61, 305 (2013))




Quantized cavity field

N cos (%) TE -pol
Ar)= (5 A{a+a'} /) eos (22, o1, L7POL
é, oS (M) dc TEi01, y-pol.
a
/
y-polarization
B
E x-polarization




Projection on the central system
Reduced density operator

ps(t) = PW(t) = pLr(0)TrLr {W (¢)}

Liouville-von Neumann =- Nakajima-Zwanzig equation (to 2nd
order in Hr), non-Markovian time-evolution

t
‘ Oips(t) = Lsps(t) +/0 dt'Kt,t —t'; ps(t')]

with

K[t,s; ps(t')] = Tror { [Hr(t), [U(s)Hr (1)U (s),
Us(s)ps(t")US (s)pLpr]] }

and
Hr(t)

Zx(t)/dq {Téicgzdi+ (Téi)*djcql}
il




Spectra of closed systems, y-polarized photons, 2QD-par.
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(ACS Photonics 2015, 2, 930 (2015))



Charge density oscillations

t =10 ps t =60 ps




Long time evolution

(No memory - Markovian evolution) in many-body Fock space (dim ~ N)

Liouville space of transitions (dim ~ N?2), (Comp. Phys. Commun. 220, 81 (2017))

o= car |

with solution

\ W@z%m%wMﬁ%)’

where

LY = VLiing, UL = Langd, UV=VU=T

Steady state can be found as the eigenvalue 0 of
0 = Lpg
but we use

(U exp (Laiagt) V] p57(0)

lim
t—o00



Radiative and nonradiative transitions

Long time evolution (Annalen der Physik 529, 1600177 (2017))
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Two types of Rabi resonances, 2QD-par.

(Annalen der Physik 530, 1700334 (2018)), (Physics Letters A 382, 1672 (2018))
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Ground state electroluminescence

(Annalen der Physik 530, 1700334 (2018))
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Current correlations
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Current noise power spectra for ground state electroluminescence
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Coexisting spin and Rabi-oscillations, 2QD-as
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Exact matrix elements for e-EM-interactions, 2QD-as.

Complex Liouvillian spectrum

10 k=1.0e-4 meV
Kk=1.0e-5 meV
0
Extreme slow interdot ground
o 1 state transition out of
L“g resonance, hw = 1.75 meV
= 20 . . ._ . ] (Annalen der Physik 531, 1900306 (2019))
30 | 1 .
.. Purcel effect seen in transport
RN T T T
¢ current (Nanomaterials 9, 1023 (2019))
-40 . . .
0 0.1 0.2 0.3

9em (MeV)




Slow interdot ground state transition
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