
09.21.52 Safneðlisfræði
Tíma- og heimadæmi
Kennari: Viðar Guðmundsson

The problems have been borrowed from several di�erent sources in equally
many languages. Try to solve as many as possible. They are not ordered accord-
ing to di�culty. Often similar examples are solved in our textbook.

1. Show that the following expressions for the entropy are equivalent in the
thermodynamic limit

S = kB ln ω(E, V, N)

S = kB ln σ(E, V,N)

where ω(E, V, N) is the volume of the phase space limited by the surface of
constant energy H(p, q) = E, and σ(E, V, N) is the derivative with respect
to E of the volume ω(E, V, N). The particles are considered to be free.

2. Consider a system of N free particles in which the energy of each particle
can assume two and only two distinct values, 0 and E (E > 0). Denote by
n0 and n1 the occupation numbers of the energy level 0 and E, respectively.
The total energy of the system is U .

(a) Find the entropy of such a system.
(b) Find the most probable values of n0 and n1, and �nd the mean square

�uctuation of these quantities.
(c) Find the temperature as a function of U , and show that it can be

negative.
(d) What happens when a system of negative temperature is allowed to

exchange heat with a system of positive temperature?
(e) Show that the maximum (minimum) entropy corresponds to minimum

(maximum) information on the system.
(f) How many bits of information are lost if the system evolves from an

initial state of zero temperature to a �nal state of in�nite temperature?

3. Consider a classical system whose Hamiltonian can be expressed as H =
H0 + λH1, where λ << 1. Show that the expansion of the Helmholtz free
energy in powers of λ has the form

F = F0 + λ〈H1〉0 + · · · ,
where F0 and 〈· · ·〉0 denote the free energy and an expectation value cal-
culated with λ = 0, and �nd the next term in this series. Within this
expansion, �nd the internal energy U = 〈H〉 correct to the �rst order in λ.
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4. Consider a classical system of N noninteracting diatomic molecules enclosed
in a box of volume V at temperature T . The Hamiltonian for a single
molecule is taken to be

H(p1,p2, r1, r2) =
1

2m
(p2

1 + p2
2) +

1

2
K|r1 − r2|2,

where p1,p2, r1, r2, are the momenta and coordinates of the two atoms in
a molecule. Find

(a) the Helmholtz free energy F (T, V, N) = U − TS of the system;
(b) the speci�c heat at constant volume;
(c) the mean square molecule diameter 〈|r1 − r2|2〉.

5. Repeat the last problem, using the Hamiltonian

H(p1,p2, r1, r2) =
1

2m
(p2

1 + p2
2) + ε|r12 − r0|

where ε and r0 are given positive constants and r12 ≡ |r1 − r2|.
Answer:

CV

Nk
= 6− x2[2(x2 − 2) + (x + 2)2 exp(−x)]

(x2 + 2− exp(−x))2

where x ≡ εr0/kT

6. Prove Van Leeuwen's Theorem: The phenomenon of diamagnetism does not
exist in classical physics. The following hints may be helpful:

(a) If H(p1, ..,pN ;q1, ..,qN) is the Hamiltonian of a system of charged
particles in the absence of an external magnetic �eld, then H[p1 −
(e/c)A1, ..,pN − (e/c)AN ;q1, ...,qN ] is the Hamiltonian of the same
system in the presence of an external magnetic �eld H = ∇×A, where
Ai, is the value of A at the position qi.

(b) The induced magnetization of the system along the direction of H is
given by

M = 〈−∂H
∂H

〉 = kT
∂

∂H
log Z(T, H, N)

where H is the Hamiltonian in the presence of H, H = |H|, and
Z(T, H, N) is the partition function of the system in the presence of
the external magnetic �eld H.

7. Compute the average energy and the heat capacity of a classical system of
N non-identical particles in d spatial dimensions, that has a Hamiltonian
of the form

H =
N∑

i=1

Ai|pi|s + Bi|qi|t.

2



The parameters Ai and Bi characterize individual particles, while s and t
are positive integers, and the system is maintained at a �xed temperature
T . As a special case, obtain the average energy and heat capacity for N
three-dimensional harmonic oscillators.

8. A simple model of the DNA molecule describes it as two strings with N
connecting links. The links can be opened like teeth in a zipper, �rst the
link at one end is opened and then the links closest to the end in a sliding
action. To open one link the energy ε > 0 is needed. Calculate the mean
number of open links as a function of T , if ε >> kBT .

9. A 'lattice gas' consists of a lattice of N sites, each of which be empty, in
which case the energy is zero, or occupied by one particle, in which case its
energy is ε. Each particle has a magnetic moment of magnitude µ which,
in the presence of an applied magnetic �eld B, can adopt two orientations
(parallel or antiparallel to the �eld).

(a) Find the canonical partition function for this system.
(b) Evaluate the average energy and the magnetization of the system.

10. A system of three-level particles has a Hamiltonian of the form

H = −h
N∑

i=1

Si, Si = −1, 0, +1,

where h is a positive constant. If nS is the average number of particles in
the state S, use the microcanonical ensemble to �nd the ratio n−1/n+1 in
terms of the temperature in the limit N → ∞. Hence �nd the Helmholtz
free energy F (T,N) by using the canonical ensemble (which is much easier).
Identify the limits in which the information on the state of the system is
maximum and minimum and �nd the entropy in these cases.

11. A molecule consisting of two di�erent atoms has the moment of inertia I.
We shall here only consider the rotational degree of freedom. The molecule
is in contact with a heat bath with temperature T . The rotational states
of the molecule have the energy

Ej =
j(j + 1)h̄2

2I

with the degeneracy (2j + 1).

(a) Find the average energy of the molecule.
(b) Use approximations to calculate the heat capacity of the molecule for

a low temperature, and a high temperature. Give arguments in which
interval the approximation is good.
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(c) The classical energy of the molecule is E = Iω2/2. Evaluate the clas-
sical heat capacity. How does it compare to the quantum mechanical
one?

12. The particles in an ideal gas have a magnetic moment µ. In a magnetic �eld
the magnetic moment can assume two directions. A homogeneous magnetic
�eld of strength B is in one half of the gas container and none in the other
half. Find the ratio between the number of particles in each half of the
container.

13. Show that in a 3D dilute quantum gas the thermal equation of state is

p

kT
= n± n

(
1

25/2

)
(nλ3) + O

(
(nλ3)3

)
,

where + stands for fermions and − for bosons.

14. Red blood cells can bind both oxygen, O2 and carbon monoxide, CO. Con-
sider the cells as a lattice with N0 sites which can either be empty or
occupied by oxygen or carbon monoxide. The binding energy for an oxy-
gen molecule is −εA and for carbon monoxide −εB. Find how the ratio of
bound molecules of either type depends on the energy di�erence εB − εA

and the relative quantity of carbon monoxide in the atmosphere. The ratio
of monoxide in the atmosphere is 10−3 at T = 37◦ C. How large can the
energy di�erence be in eV without carbon monoxide binding easier than
oxygen?

15. Investigate the statistical thermodynamics of an ideal Bose gas in a uni-
form gravitational �eld (of acceleration g). Show, in particular, that the
phenomenon of Bose-Einstein condensation sets in at a temperature T ,
given by

Tc ≈ T 0
c


1 +

8

9

1

ζ(3/2)

(
πmgL

kT 0
c

)1/2



where L is the hight of the container and (mgL) << (kT 0
c ). Also show that

the condensation is accompanied by a discontinuity in the speci�c heat of
the gas:

(∆CV )T=Tc ≈ − 9

8π
ζ

(
3

2

)
Nk

(
πmgL

kT 0
c

)1/2
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16. Consider an ideal Bose gas composed of molecules with internal degrees of
freedom. Assuming that, besides the ground state ε = 0, it is only the
�rst excited state ε1 of the internal spectrum that needs to be taken into
account, determine the condensation temperature of the gas as a function
of ε1. Show in particular that, for (ε1/(kT 0

c )) >> 1,
Tc

T 0
c

≈ 1−
2
3

ζ
(

3
2

) exp

(
− ε1

kT 0
c

)

and for (ε1/(kT 0
c )) << 1,

Tc

T 0
c

≈
(

1

2

)2/3
[
1 +

24/3

3ζ(3/2)

(
πε1

kT 0
c

)]1/2

.

17. Evaluate the grand partition function of a two-dimensional ideal Bose gas
and derive an expression for the (equilibrium) number of particles per unit
area of the system as a function of the parameters z and T . Show that this
system does not exhibit the phenomenon of Bose-Einstein condensation.

18. Show that, in two dimensions, the speci�c heat CV (N, T ) of an ideal gas of
fermions is identical with the speci�c heat of a corresponding gas of bosons,
for all values of N and T . Further show that in the extreme relativistic case
the same result holds in one dimension.

19. Evaluate the entropy, S, the internal energy, U , and the heat capacity, C,
of the one-dimensional Ising model in the case of no external magnetic �eld
B.

20. Write down the transfer matrix for the one-dimensional spin-1 Ising model
in zero �eld which is described by

H = −I
∑

i

σiσi+1, σi = ±1, 0. (1)

Hence calculate the free energy per spin of this model and show that it has
the expected behavior in the the limits T → 0 and T →∞.
Answer:

F = −kBT ln


1 + 2 cosh βI +

√
(2 cosh βI − 1)2 + 8

2


 . (2)

21. Consider an interface in the one-dimensional Ising model,
σi = −1, i < 0; σi = 1, i ≥ 0. (3)

By writing down the energy and the entropy associated with such an excita-
tion argue that the one-dimensional Ising model cannot sustain long-range
order for any non-zero temperature.
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22. Calculate the correlation function

ΓR = (〈σ0σR〉 − 〈σ0〉〈σR〉), (4)

and the correlation length

ξ−1 = lim
R→∞

{
− 1

R
ln |〈σ0σR〉 − 〈σ0〉〈σR〉|

}
, (5)

of the one-dimensional Ising model using the technique of transfer matrices.
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