Háskóli Íslands Raunvísindadeild Eðlisfræðiskor

09.21.52 Safneðlisfræði

Fimmtudaginn 16. desember 2004, kl. 9-12. Kennari: Viðar Guðmundsson.

Leyfileg hjálpargögn eru: Vasatölva, kennslubók og stærðfræðihandbækur. Select any 4 of the 5 problems:

- 1. A monoatomic gas consists of atoms with two energy levels: a ground state of degeneracy g_1 and a low-lying excited state of degeneracy g_2 at an energy E above the ground state. Find the specific heat of this gas.
- 2. Consider a classical system whose Hamiltonian can be expressed as $H = H_0 + \lambda H_1$, where $\lambda \ll 1$. Show that the expansion of the Helmholtz free energy in powers of λ has the form

$$F = F_0 + \lambda \langle H_1 \rangle_0 + \cdots,$$

where F_0 and $\langle \cdots \rangle_0$ denote the free energy and an expectation value calculated with $\lambda = 0$, and find the next term in this series. Within this expansion, find the internal energy $U = \langle H \rangle$ correct to the first order in λ .

- 3. For an ideal gas of N two-dimensional fermions find an expression for the chemical potential μ as a function of the temperature T. How are μ and ϵ_F related at a low temperature?
- 4. Evaluate the entropy per spin S/N, and the free energy per spin F/N for the one-dimensional Ising model in no external magnetic field in the thermodynamic limit.
- 5. A lattice of N+1 sites has spins $S_i = \pm 1$ at each site, all of which are acted on by a magnetic field. There are interactions of equal strength between one of the spins, S_0 , and each of the others. Thus the Hamiltonian is

$$H = -h \sum_{i=0}^{N} S_i - J \sum_{i=1}^{N} S_i S_0.$$

- (a) Find the canonical partition function Z(T, N).
- (b) Find the average energy $\langle E \rangle$.
- (c) For $i \neq 0$ find the statistical averages $\langle S_i \rangle$ and $\langle S_0 S_i \rangle$, and their limits as $h \to 0$ with $J \neq 0$, and when $J \to 0$ with $h \neq 0$.