(1) Cross section of the infinite system

cylindrical conductor with line charge λ inside a cylindrical conducting shell, that was initially uncharged
we can use some of the results from Problem 3 of set 10, where the Gauß law was used to derive

$$
\begin{array}{ll}
\bar{E}=\frac{\lambda \hat{r}}{2 \pi \epsilon_{0} r} & \text { in II and IV } \\
\bar{E}=O & \text { in I and III }
\end{array}
$$

The total charge of the cylindrical "wire" inside the shell is $Q=\lambda L$ where L is the length of the cylinder cue do not worry about that $L \rightarrow \infty$ that only guarantees the cylindrical symmetry of the system
a) The same amount of opposite charge must reside on the inner surface of the cylinder

$$
\rightarrow \underline{\nabla_{b}}=-\frac{Q}{A_{b}}=-\frac{\lambda L}{2 \pi b L}=-\frac{\lambda}{2 \pi b}
$$

(2) Dilute gas \rightarrow assume an ideal gas

$$
p V=n R T
$$

work done by the gas
a)

$$
\begin{aligned}
W & =\int_{V_{i}}^{\text {Dork done by the gas }} \rho d V=\int_{V_{i}}^{V_{f}} \frac{n R T}{V} d V=n R T \int_{V_{i}}^{V_{f}} \frac{d V}{V} \\
& =n R T \ln \left(\frac{V_{f}}{V_{i}}\right) \rightarrow n=\frac{W}{R T \ln \left(\frac{V_{f}}{V_{i}}\right)}
\end{aligned}
$$

$$
n=\frac{100 \mathrm{~J}}{8.31 \frac{\mathrm{~J}}{\mathrm{hd} \cdot \mathrm{~K}} \cdot 300 \mathrm{~K} \ln \left(\frac{4.0}{1.0}\right)}=0,029 \text { mole }
$$

b)
we assume the dilute gas can be considered an ideal gas to obtain the necessary equation of state needed to calculate the work by the gas
(1) and notice that the dimension of σ_{b} must be correct, $\left[\sigma_{b}\right]=\frac{Q}{L^{2}}$

The cylinder shell was initially without charge $\rightarrow Q_{b}+Q_{d}=0$

$$
\rightarrow \underbrace{\nabla_{d}}_{b}=+\frac{Q}{A_{d}}=+\frac{\lambda L}{2 \pi d L}=+\frac{\lambda}{2 \pi d}
$$

b)
$V_{b}-V_{a}=-\int_{a}^{b} \bar{E} \cdot d \bar{l}$, where we choose $d \bar{l}=d \bar{r}$

$$
\begin{aligned}
& =-\int_{a}^{a} \frac{\lambda}{2 \pi \epsilon_{0}}-\frac{d r}{r}=-\left.\frac{\lambda}{2 \pi \epsilon_{0}} \ln (r)\right|_{a} ^{b}=-\frac{\lambda}{2 \pi \epsilon_{0}} \ln \left(\frac{b}{a}\right) \\
\rightarrow & V_{b}-V_{a}=-\frac{\lambda}{2 \pi \epsilon_{0}} \ln \left(\frac{b}{a}\right)
\end{aligned}
$$

c) $V_{d}-V_{b}=-\int^{d} \bar{E} \cdot d \bar{r}=0$ as in equilibrium the electrical field is o inside a conductor
(3) $\mathrm{H}_{2} \mathrm{O} \underbrace{T_{i}=25^{\circ} \mathrm{C} \rightarrow 100^{\circ} \mathrm{C}}_{\text {Step } 1} \rightarrow \underbrace{\text { vapor }}_{\text {Step } 2}$
a)

$$
\Delta S=\int_{A}^{B} \frac{d Q}{T}, \quad m=150 \mathrm{~g}=0,150 \mathrm{~kg}
$$

heating process at constant p, we assume we can use the information from chapter 1, Table 1.3

$$
\begin{aligned}
\Delta S_{1}=\int_{298}^{373} Q=m C_{H_{2} \mathrm{O}} \Delta T & , \quad c_{\mathrm{H}_{2} \mathrm{O}} \approx 4186 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
& =m c_{\mathrm{H}_{2} \mathrm{O}} \ln \left(\frac{373}{298}\right) \\
& =0.150 \mathrm{~kg} \cdot 4186 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \ln \left(\frac{373}{298}\right) \\
& =141 \frac{\mathrm{~J}}{\mathrm{~K}}
\end{aligned}
$$

$$
\begin{aligned}
\Delta S_{2} & =\int_{A}^{B} \frac{d Q}{T} \text { at constant } \\
& =\frac{1}{T} \Delta Q=\frac{1}{T} m\left(L_{v}\right)_{H_{2} \mathrm{O}},\left(L_{v}\right)_{H_{2} \mathrm{O}}=2256 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& =\frac{1}{373 \mathrm{~K}} 0.150 \mathrm{~kg} \cdot 2256 \cdot\left(0^{3} \frac{\mathrm{~s}}{\mathrm{~kg}}\right. \\
& =907 \frac{\mathrm{~J}}{\mathrm{~kg}}
\end{aligned}
$$

c) The entropy increase in the vaporization process is almost 6.5 times larger as the phase change from a liquid to a gas state requires a large amount of energy. The liquid has much less entropy than the gas

a) we use the equation of continuity

$$
\begin{aligned}
& A_{1} v_{1}=A_{2} v_{2} \\
\rightarrow \quad & \pi d_{1}^{2} v_{1}=\pi d_{2}^{2} v_{2} \\
\rightarrow \quad & v_{2}=v_{1} \frac{d_{1}^{2}}{d_{2}^{2}}
\end{aligned}
$$

b) The equation of continuity can be used as the fluid is incompressible and we have for the flow

$$
Q_{1}=A_{1} V_{1}=A_{2} V_{2}=Q_{2}=Q
$$

so, as the diameter of the pipe changes the speed has to change in order to satisfy the equation of continuity, no mass is lost in the flow
c) For a viscous fluid the type of flow might get more tubulent as the speed increases
c) we can use Eq. (12.7) with the substitution: $R \rightarrow d / 2$

$$
\rightarrow B_{c}^{\text {circlap }}=\frac{\mu_{0} I}{d}
$$

and we had $B_{c}^{\text {sq. lop }}=\frac{2^{3 / 2}}{\pi} \frac{\mu_{0} I}{d} \approx 0,900 \cdot \frac{\mu_{0} I}{d}$
So, the strength of B in the center of the square loop is about 90% of the strength of B in the circular loop. In the square loop the current, 1 , is most often at a longer distance than d from the center of the loop. This must lead to a weaker B for the square loop

