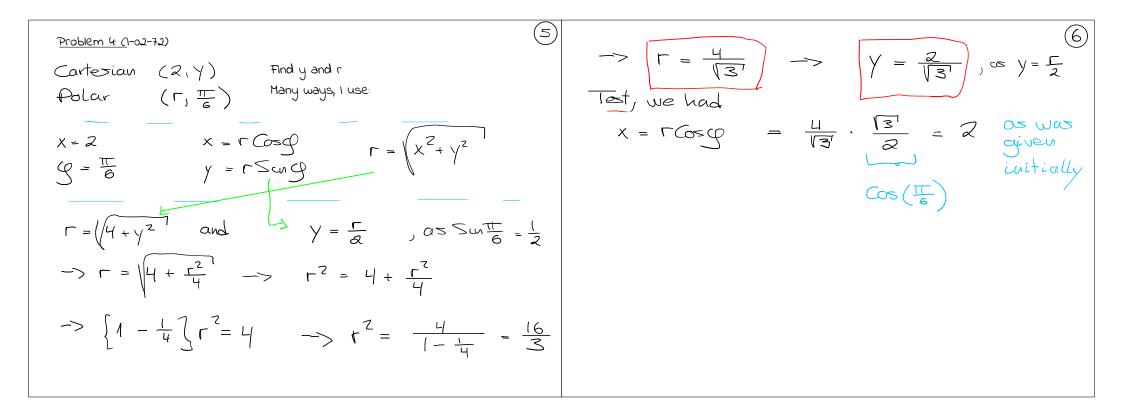
Toolem 4 Estimate surface area
$$h$$
 of human being with mass h and height h
Cycoderial human should give us to use to work for h . Cycletical could h :
 $M = \frac{1}{2} V = \frac{1}{2} h + \pi T^{2}$, V with weak h and height h
 $M = \frac{1}{2} V = \frac{1}{2} h + \pi T^{2}$, V with weak h and height h
 $A = h + 2\pi T^{2} + \frac{2}{2} \pi T^{2}$, V with weak h and height h
 $A = h + 2\pi T^{2} + \frac{2}{2} \pi T^{2}$, V with weak h and height h
 $A = h + 2\pi T^{2} + \frac{2}{2} \pi T^{2}$, V with weak h and height h
 $A = h + 2\pi T \frac{M}{2^{4}\pi^{2}} + \frac{2}{2^{4}\pi^{2}}$, $T = \sqrt{\frac{M}{2^{4}\pi^{2}}}$, $T = \sqrt{\frac{M}{2^$



$$\begin{array}{c} \frac{\operatorname{brodem} i}{\operatorname{c}} (\operatorname{naskep}) & (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (4) \\$$

Problem + (0.4 so)
Problem + (0.4 so)
Equilibrium
$$\overline{-1}$$

Equilibrium $\overline{-1}$
Equilibriu

Problem 1: (1-07-48)	Problem 2: (1-07-54)
$M_{1} = 5.0 \text{ kg} \qquad \left(E_{\text{kin}}\right)_{1} = 5\left(E_{\text{kin}}\right)_{2}$ $M_{2} = 8.0 \text{ kg} \qquad \left(E_{\text{kin}}\right)_{1} = 5\left(E_{\text{kin}}\right)_{2}$ $\longrightarrow \frac{1}{2}M_{1}V_{1}^{2} = \frac{3}{2}H_{2}V_{2}^{2}$	$H = 6.0 \text{ kg} \qquad \Rightarrow a = 2.0 \text{ m/s}^2$ F_{μ} F_{μ}
$\implies \left(\frac{\mathcal{V}_{i}^{2}}{\mathcal{V}_{z}^{2}}\right) = \Im \frac{\mathcal{M}_{z}}{\mathcal{M}_{i}}$	Translation $4k = 0.10 \text{ m}$ Use the general eq. $W_{AB} = \int F \cdot dF$ C_{AB}
$\rightarrow \frac{V_1}{V_2} = \sqrt{3\frac{M_2}{H_1}} = \sqrt{\frac{3.80}{5.0}} = 2.2$	$F_{\text{net}} = F - f_{\mu} (1D \longrightarrow \text{ use a sign to indicate the direction of a vector)}$ (b) $F_{\text{net}} = Ma \longrightarrow F - f_{\mu} = F - \mu_{\kappa}N = Ma$ $\longrightarrow F - \mu_{\kappa}Mg = Ma$
	$\frac{\text{Work } f_{\mu}}{W^{f_{\mu}}} = \int_{-\infty} f_{\mu} \cdot d\tau = -f_{\mu} \cdot \Delta X = -\mu_{k} \text{ Mg} \cdot \Delta X$ $\xrightarrow{\Delta \times}> f \text{ dissipates energy from M}$
() up to F F . (3)	(4)
C) work of F_{ret} (3) $W^{f_{ret}} = M\alpha \cdot \Delta x$	$\frac{\text{Problem 3: (1-08-28)}}{1D \text{ wotion in force field}} F(x) = \left(\frac{3}{\sqrt{x^2}}\right) N$
a) Work of F	which in reality means that "3" has dimension
$W^{F} = F \cdot \Delta X = \left\{ Ma + \mu_{E} Mg \right\} \Delta X$ $\longrightarrow W^{F} = W^{F_{wef}} - W^{F\mu}$	$\frac{x_{o}=2.0 \text{ w}}{100000000000000000000000000000000000$
d) ΔE_{kech} ? $\Delta E_{pot} = 0$	No friction, no dissipation, 1D conservative force $\rightarrow \Delta E_{total} = O$
$\Box = \bigcup_{k \in h} = \bigcup_{k \in h} = \bigcup_{k \in h} = M\alpha \cdot \Delta X$	$F(x) = -\frac{dU(x)}{dx} = \left(\frac{3}{\sqrt{x}}\right)N$
= 5.0 kg $\cdot 2.0 \text{ m/s}^2 \cdot 0.1 \text{ m}$	$\rightarrow U(x) = -6 \sqrt{x^7} + V_0$
$=$ $\frac{1.0 \text{ J}}{}$	$U(x) - U_o = (-6\sqrt{x'})N$
	$U(7) = -6 \sqrt{7} + 0_{0}$ $U(2) - 6 \sqrt{2} + 0_{0}$ $\int -5 \sqrt{2} \sqrt{(2)} = -6 \sqrt{7} - \sqrt{2}$

$$\Delta E_{kun} = \frac{M}{2} \left\{ V_{i}^{2} - V_{o}^{2} \right\}$$
and
$$\Delta E_{kun} + \Delta U = 0$$

$$\rightarrow \frac{M}{2} \left\{ V_{i}^{2} - V_{o}^{2} \right\} - 6 \left\{ \left[\overline{r} \right] - \left[\sqrt{2} \right] \right\} = 0$$

$$\rightarrow V_{i}^{2} = V_{o}^{2} + \frac{i2}{M} \left\{ \left[\overline{r} \right] - \left[\sqrt{2} \right] \right\} = 0$$

$$V_{i} = \left[V_{o}^{2} + \frac{i2}{M} \left\{ \left[\overline{r} \right] - \left[\sqrt{2} \right] \right\} \right]$$

$$= \left[V_{o}^{2} + \frac{i2}{M} \left\{ \left[\overline{r} \right] - \left[\sqrt{2} \right] \right\} \right]$$

I consider the system to be the mass and the force field, thus there is no external force working on the mass. If the force field is considered to be an external one, then I have to calculate how the external force changes the kinetic energy of the mass by doing work on it

Problem 4 (1-08-40)

$$M = 40 \text{ fg}$$

$$S_{1} = 14.2 \text{ m}$$

$$V_{1} = 0$$

$$V_{1} = 0$$
Find F_{μ}
component of gravity pulling the girl down the slope $-M_{2} \le \omega$
the total force against her motion $-F_{\mu} - M_{2} \le \omega$

$$-\sum \alpha = -\frac{f_{\mu}}{M} - 2 \le \omega \Theta$$
, use $v_{0}^{2} = v_{0}^{2} + 2\alpha \le \omega$

$$-\sum 0 = v_{0}^{2} - 2S \frac{F_{\mu}}{M} - 2S_{0} \le \omega \Theta$$

$$-\sum (-F_{\mu}) = \frac{Mv_{0}^{2}}{2S} - M_{2} \le \omega \Theta$$

$$\frac{2242m \pm 1/(2m + 6)}{m + 2} \qquad (1 + 1/(2m + 6)) \qquad (1 + 1/(2m + 6)) \qquad (2 + 1/(2m + 6)) \qquad$$

Problem 6 (1-H-50)
(1) H = 3000 kg Find winimum Lo for
the roller constart to
stay on the track
We need at least gravity to supply

$$E_{r} = HR \omega_{1}^{2} - H \frac{\omega_{1}^{2}}{R}$$

Sogminimum angular frequency
 $W = Mg = MR \omega_{1}^{2} - M \frac{\omega_{1}^{2}}{R}$
 $L_{1} = R \cdot M(\omega, R) = MR^{2} \omega_{1}$
 $L_{2} = MR^{2} \omega_{0}$
(3)
Energy conservation
 $E_{1} = E_{0}$
 $E_{1} = E_{0}$
 $\frac{1}{2} M(\omega, R)^{2} + gHR = \frac{1}{2} H(\omega_{0} R)^{2}$
 $\Rightarrow (\omega_{1}R)^{2} + gHR = (\omega_{0}R)^{2}$
 $\Rightarrow (\omega_{0}R) = ((\omega_{1}R)^{2} + gHR^{-1})$
 $\Rightarrow (\omega_{0}R) = ((\omega_{1}R)^{2} + gHR^{-1})$
 $\Rightarrow (\omega_{0}R) = MR^{2} \omega_{0} = MR \sqrt{((\omega_{1}R)^{2} + 4gR)^{2}} + 4gR$
 $\sum_{0} L_{0} > MR \sqrt{((\omega_{1}R)^{2} + 4gR)^{2}} = MR \sqrt{gR + 4gR} = MR \sqrt{gR + 4gR}$

with Ex. 14.7 in the book in mind and the eq. for $N_{\rm g}$ I see we only need the equation of continuity

$$Q_{1} = A_{1}V_{1} = A_{2}V_{2} = Q_{2}$$

$$V_{1} = \frac{Q_{1}}{A_{1}} = \frac{Q_{1}}{\pi^{-}(\frac{d_{n}}{2})^{2}} = \frac{Q_{0}Q_{0}Q_{1}}{1} \frac{1}{\pi^{-}(0.032)} \frac{1}{m^{2}}$$

$$V_{2} = V_{1}\left(\frac{A_{1}}{A_{2}}\right) = \frac{2Q_{1}V_{1}\left(\frac{d_{1}}{2}\right)}{2} = \frac{2Q_{1}\left(\frac{Q_{1}}{\pi^{-}(\frac{d_{2}}{2})^{2}}\right)\left(\frac{d_{1}}{2}\right)}{2}$$

$$Hose: \left(N_{R}\right)_{R} = \frac{2Q_{1}V_{1}\left(\frac{d_{1}}{2}\right)}{2} = \frac{2Q_{1}\left(\frac{Q_{1}}{\pi^{-}(\frac{d_{2}}{2})^{2}}\right)\left(\frac{d_{1}}{2}\right)}{2}$$

$$= \frac{2 \cdot 10^{3} \text{ kg/s} \cdot 12.4 \text{ M/s} \cdot 0.032 \text{ m}}{1.002 \cdot 10^{3} \text{ Ra} \cdot \text{s}} = \frac{792 \cdot 10^{5}}{2}$$

Nozle:

$$(N_R)_n = (N_R)_h \cdot (\frac{d_h}{d_n}) \approx 1.69 \cdot 10^6$$

6

 $\overline{(2)}$

So, both the flow in the hose and the nozzle could be considered turbulent

The kind if the first key the when
$$\Delta T = |k_0| \leq C$$

Table 1.2 -steel $-\infty |k-1| \geq 10^{-6} |k| = 120 |k|$
 $\Delta L = |k| + |\Delta T = |k| = 2 |k| = 120 |k| = 120$

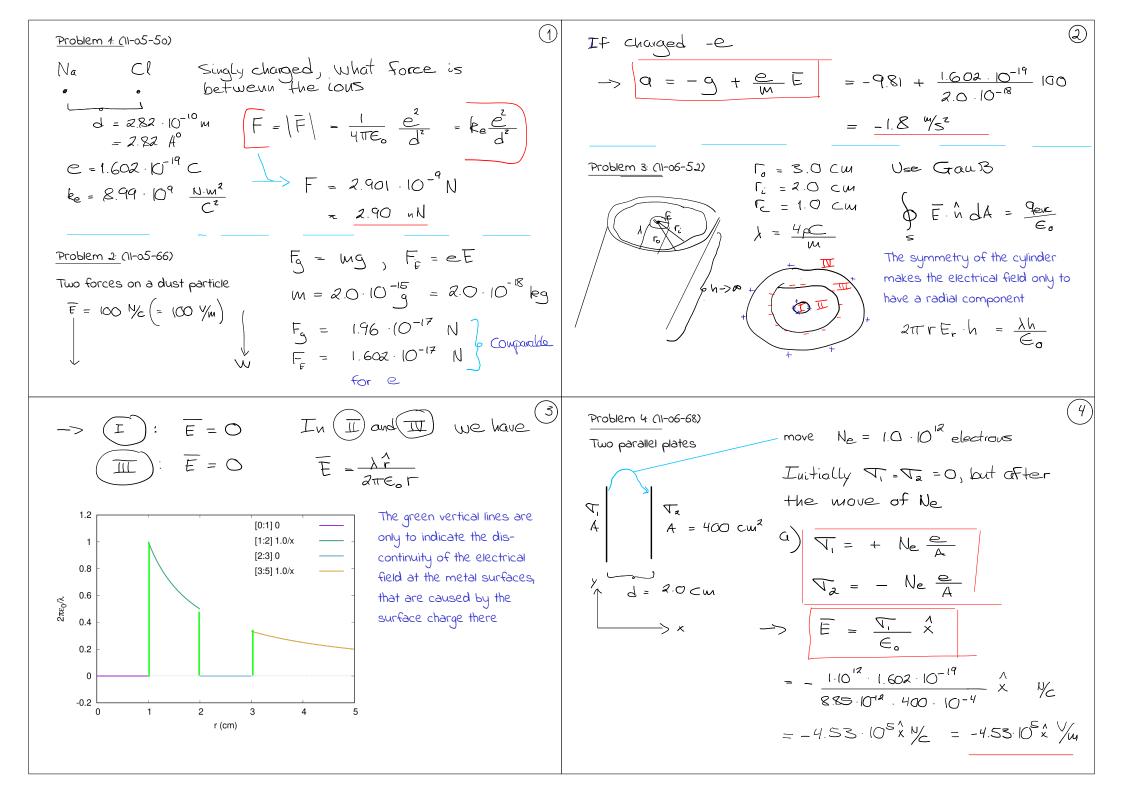
but remember

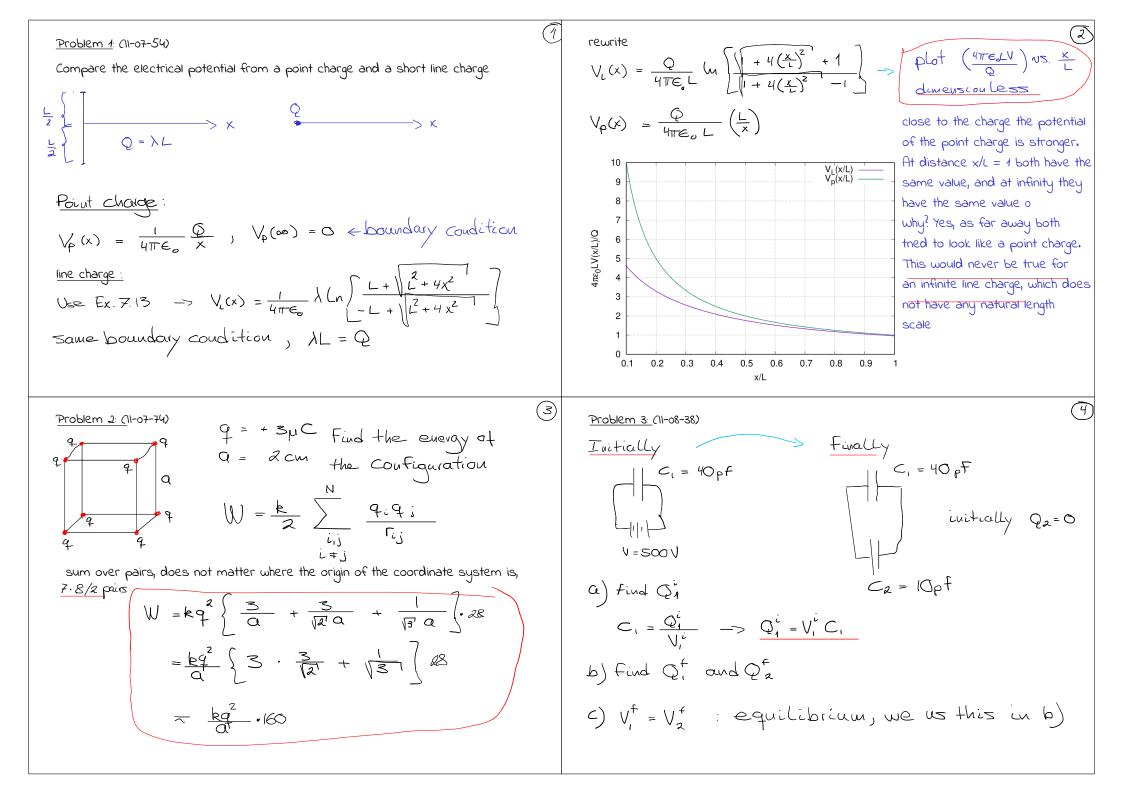
$$1f_{a} = 1 \frac{N}{M^{2}} = 1 \frac{kg}{M^{2}} = 1 \frac{kg}{M^{2}} = 1 \frac{kg}{M^{2}}$$

Problem 4: (11-02-58) How much Q (heat) is needed to raise $T_0 = 25.0^{\circ}C \longrightarrow 33.0^{\circ}C = T_f$ (a) for air n = 1.5 with , dictomic, Table 2.3 : $C_v = 2.5 R$ $Q^{oir} = nC_v \Delta T = n(2.5R)\Delta T \simeq 1.5$ where $(2.5 \cdot 8.31 \frac{3}{Wel.5}) \cdot 8 \simeq 2503$ (b) For Xenou, ideal gos $C_v = \frac{3}{2}R$ $= Q^{Xenov} = n(1.5R)\Delta T \approx 1.503$

G

Product + (Use 30)
P(ST)
S =
$$\frac{1}{\sqrt{2}}$$
 $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$





$$V_{1}^{F} = \frac{Q_{1}^{F}}{C_{1}} \quad \text{and} \quad V_{2}^{F} = \frac{Q_{2}^{F}}{C_{2}} \qquad (5)$$

$$V_{1}^{F} = V_{2}^{F} \quad \frac{Q_{1}^{F}}{C_{1}} = \frac{Q_{2}^{F}}{C_{2}} \quad (1)$$

$$V_{1}^{F} = V_{2}^{F} \quad \frac{Q_{1}^{F}}{C_{1}} = \frac{Q_{2}^{F}}{C_{2}} \quad (1)$$

$$W_{1}^{F} = V_{2}^{F} \quad \frac{Q_{2}^{F}}{C_{2}} \quad (1)$$

$$W_{1}^{F} = V_{2}^{F} \quad \frac{Q_{2}^{F}}{C_{2}} \quad (1)$$

$$W_{1}^{F} = \frac{Q_{2}^{F}}{C_{1}} \quad (1)$$

$$W_{1}^{F} = \frac{Q_{2}^{F}}{C_{1}} \quad (1)$$

$$W_{1}^{F} = \frac{Q_{2}^{F}}{C_{2}} \quad (1)$$

$$W_{1}^{F} = \frac{Q_{2}^{F}}{C_{2}} \quad (1)$$

$$W_{1}^{F} = \frac{Q_{2}^{F}}{C_{1}} \quad (1)$$

$$W_{1}^{F} = \frac{Q_{1}^{F}}{C_{1}} \quad (1)$$

$$W_{1}^{F} = \frac{Q_{1}^{F}}{C_{1}} \quad (1)$$

$$W_{2}^{F} = \frac{Q_{1}^{F}}{C_{1$$

$$\frac{\operatorname{Prodem 4}(\operatorname{Vert} 4G)}{\operatorname{O}^{3}} = \frac{2}{4} \underbrace{\operatorname{Ce}}_{Q} + \underbrace{Ce}}_{Q} + \underbrace{\operatorname{Ce}}_{Q} + \underbrace{\operatorname{Ce}}_{Q} + \underbrace{Ce}}_{Q} + \underbrace{\operatorname{Ce$$