Problem 1: Estimate surface area A of human being with mass M and height h
(1) here is good to check the dimension

Cylindrical human should give us lower bounds for A, ("spherical cow":))

$$
\left\{\begin{aligned}
M & =\rho \cdot V=\rho \cdot h \cdot \pi r^{2}, \quad V: \text { volume, } \rho: \text { density } \\
A & =\underbrace{h \cdot 2 \pi r}_{\text {side }}+\underbrace{2 \cdot \pi r^{2}}_{\text {top }+ \text { bolus }} \\
r^{2} & =\frac{M}{\rho^{h \pi}} \rightarrow r=\sqrt{\frac{M}{S^{h \pi}}} \\
\rightarrow \sqrt{A} & =h 2 \pi \sqrt{\frac{M}{\rho h \pi}}+\frac{2 \pi M}{\rho h \pi} \\
& =\frac{2 \sqrt{\frac{h M \pi}{S}}+\frac{2 M}{\rho h}}{}
\end{aligned}\right.
$$

For fun we test numbers

$$
[A]=L^{2}=\sqrt{\frac{L M L^{3}}{M}}+\frac{M L^{3}}{M L}=\underline{L^{2}}
$$

$$
\begin{aligned}
M=80 \mathrm{~kg}, h=1.90 \mathrm{~m}, & \rho \sim 1000 \mathrm{~kg} / \mathrm{m}^{3} \\
\rightarrow A & =\left\{2 \sqrt{\frac{1.90 \cdot 80 \cdot \pi}{1000}}+\frac{2.80}{1900}\right\} \mathrm{m}^{2} \\
& =\{1,382+0,084\} \mathrm{m}^{2} \approx \frac{1,5 \mathrm{~m}^{2}}{}
\end{aligned}
$$

72.0 beats/ min
a) Beats in 2.0 yr

$$
\left.\begin{array}{l}
\left\{2 \mathrm{yr}=2 \cdot 365 \cdot 24 \cdot 60 \mathrm{~min}=1.0512 \cdot 10^{6} \mathrm{~min}\right\} \\
2.0 \mathrm{yr} \rightarrow \mathrm{~V}
\end{array}=7.20 \cdot 10^{1} \mathrm{boat} / \mathrm{min} \cdot 1.1 \cdot 10^{6} \mathrm{~min}\right\}
$$

b) 2.00 yr

$$
\begin{aligned}
N & =7.20 \cdot 10^{1} \text { beats/min } 1.0512 \cdot 10^{7} \mathrm{~min} \\
& \approx 7.57 \cdot 10^{7}
\end{aligned}
$$

C) 2.000 yr
even though the time is known with more accuracy, the heart rate only has 3 significant digits $\rightarrow \quad N \simeq 7.57 \cdot 10^{7}$

Problem 3: $(1-01-84)$
Box:

$$
\begin{aligned}
a=1.80 & \pm 0.1 \mathrm{~cm} \\
b=2.05 & \pm 0.02 \mathrm{~cm} \\
C=3.1 & \pm 0.1 \mathrm{~cm} \\
V=a b c & =(a \pm \Delta a)(b \pm \Delta b)(c \pm \Delta c) \\
& \left.=a b c\left(1 \pm \frac{\Delta a}{a}\right)\left(1 \pm \frac{\Delta b}{b}\right)\left(1 \pm \frac{\Delta c}{c}\right)\right) \\
& \simeq a b c\left\{1 \pm \frac{\Delta a}{a} \pm \frac{\Delta b}{b} \pm \frac{\Delta c}{c}\right\} \\
& =a b c \pm[b c \Delta a+a c \Delta b+a b \Delta c\} \\
& =\left[1.1 \cdot 10^{1} \pm 2\right\} \mathrm{cm}^{3}=[11 \pm 2] c m^{3}
\end{aligned}
$$

discard terms with

Problem 4: (1-02-72)
Cartesian (2,Y)
Polar $\left(r, \frac{\pi}{6}\right)$

$$
\begin{aligned}
& \begin{array}{ll}
x=2 & x=r \cos \varphi \\
\varphi=\frac{\pi}{6} & y=r \operatorname{sen} \varphi \quad r=\sqrt{x^{2}+y^{2}} \\
r=\sqrt{4+y^{2}} \quad \text { and } & \quad, \quad \cos \sin \frac{\pi}{6}=\frac{1}{2}
\end{array} \\
& \rightarrow r=\sqrt{4+\frac{r^{2}}{4}} \rightarrow r^{2}=4+\frac{r^{2}}{4} \\
& \rightarrow\left\{1-\frac{1}{4}\right\} r^{2}=4 \rightarrow r^{2}=\frac{4}{1-\frac{1}{4}}=\frac{16}{3}
\end{aligned}
$$

$$
\rightarrow \underset{r=\frac{4}{\sqrt{3}}}{\text { lest, we had }} \rightarrow y=\frac{2}{\sqrt{3}} \text {, as } y=\frac{r}{2}
$$

Jest, we had

$$
x=r \cos \varphi=\frac{4}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2}=2
$$

a)

a: Constant
$v_{1}=v_{0}+a t_{1}=a t_{1} \rightarrow t_{1}=\frac{v_{1}}{a}=\frac{2.00}{1.40} s=1.43 \mathrm{~s}$
b) $U_{0}=2.00 \mathrm{~m} / \mathrm{s}$ $v_{1}=0$
$t_{0}=0 \quad a=? \quad t_{1}=0,800 \mathrm{~s}$
$v_{1}=v_{0}+a t_{1}$
$0=v_{0}+c t_{1} \rightarrow a=-\frac{v_{0}}{t_{1}}=-\frac{2.00 \mathrm{~m} / \mathrm{s}}{0,800 \mathrm{~s}}=-2.50 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
a) $v_{0}=9.00 \mathrm{~m} / \mathrm{s} \quad \square a=-2.00 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{array}{ll}
t_{0}=0 & t_{1}=5.00 \mathrm{~s} \\
S_{0}=0 & s_{1}=? \\
v_{1}=v_{0}+a t_{1} & =[9.00-2.00 \cdot 5.00] \mathrm{m} / \mathrm{s}=-1.00 \mathrm{~m} / \mathrm{s}
\end{array}
$$

so, she has turned around

$$
\begin{aligned}
S_{1} & =S_{0}+v_{0} t_{1}+\frac{1}{2} a t_{1}^{2} \\
& =\left\{0+9.00 \cdot 5.00-\frac{1}{2} 2.00 \cdot(5.00)^{2}\right\} m=20.0 \mathrm{~m}
\end{aligned}
$$

So, she turns around, that is probably not a usual behavior here...

20.0 m

Problem 4 (1-04-56)

Vertical motion
$\left[h_{1}=0=h_{0}+\frac{1}{2} g t_{1}^{2}\right.$
Horizontal motion

$$
R=0+v_{0} t_{1} \rightarrow v_{0}=\frac{R}{t_{1}} \text { or } t_{1}=\frac{R}{v_{0}}
$$

$$
\left\lfloor 0=h_{0}+\frac{g}{2}\left(\frac{R}{v_{0}}\right)^{2} \longrightarrow \begin{array}{l}
v_{0}^{2} h_{0}+\frac{9}{2} R^{2}=0 \\
v_{0}^{2}=-\frac{g R^{2}}{2}=
\end{array}\right.
$$

$$
\begin{aligned}
& \left(\frac{\kappa}{v_{0}}\right)=-\frac{9 R^{2}}{2 h_{0}^{2}} \\
& \rightarrow v_{0}=\sqrt{-\frac{9 R^{2}}{2 h_{0}}} \simeq 10^{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Problem 1: (1-05-32)

a) System of interest if $a_{\text {wagon }}=a$ is needed
b)

$$
a M=F_{1}-F_{2}+f_{\mu}
$$

If $V_{0}=0$ and as $F_{1}-F_{2}<0$
the wagon is accelerated to the Left

$$
\begin{aligned}
& \rightarrow F_{\mu}=12.0 N \quad\left(\text { to the right) }^{M}=\frac{F_{1}-F_{2}+F_{\mu}}{M}=\frac{750-900+120 \mathrm{~m} / \mathrm{s}^{2}}{230}\right.
\end{aligned}
$$

c) but if $f_{\mu}=15.0 \mathrm{~N}$ and $v_{0}=0 \rightarrow a=0$

Problem 3: (1-05-62)

Find T
$\tan \theta=\frac{\Delta y}{\Delta x}$, Equilibrium when $2 T \cdot \sin \theta=F$

$$
\begin{aligned}
\operatorname{Sin}\{\arctan (z)\} & =\frac{F}{2 \sin \theta}=\frac{F}{2 \operatorname{Sin}\left\{\arctan \left(\frac{\Delta y}{\Delta x}\right)\right]} \\
& =\frac{F}{2} \sqrt{\frac{1-\left(\frac{\Delta y}{\Delta x}\right)^{2}}{\left(\frac{\Delta y}{\Delta x}\right)}} \\
\sqrt{1-z^{2}} & \simeq 1.80 \cdot 10^{3} \mathrm{~N}
\end{aligned}
$$

Problem 2: (1-05-46)

accelerates from $V_{0}=0$ at $t_{0}=0$ to $v_{1}=83.0 \mathrm{~km} / \mathrm{h}$ in $t_{1}=5.00 \mathrm{~s}$ $F_{\mu}=1350 \mathrm{~N}$
$W=12500 \mathrm{~N}$
Find the force produced by the motor

$$
\begin{aligned}
& V_{1}=v_{0}+a t_{1}=a t_{1} \rightarrow a=\frac{v_{1}}{t_{1}} \\
& a=\frac{83.0 \mathrm{~km} / \mathrm{h} \cdot 1000 \frac{\mathrm{~m}}{\mathrm{~km}} \cdot \frac{\mathrm{~h}}{3600 \mathrm{~s}}}{5.00 \mathrm{~s}} \simeq 4.61 \mathrm{~m} / \mathrm{s}^{2} \\
& W=g M \rightarrow M=\frac{w}{9} \rightarrow\left(F_{\text {motor }}-F_{\mu}\right)=a M=\frac{v_{1}}{t_{1}} \frac{\omega}{9} \\
& \left.\rightarrow F_{\text {motor }}=F_{\mu}+\frac{U_{1} w}{t_{1} g}=1350 \mathrm{~N}+\left(\frac{83.0}{3.6}\right) \frac{12500}{5.00(9,81}\right) \mathrm{N} \\
&
\end{aligned}
$$

Problem 4: (1-05-76)
w

Find Fasting on the swimmer in the water, that stops her

$$
\begin{aligned}
& V_{2}=V_{1}+a \cdot \Delta t \\
& 0=V_{1}+a \cdot \Delta t \rightarrow a=-\frac{V_{1}}{\Delta t}=\frac{\sqrt{2 h_{0} g}}{\Delta t}
\end{aligned}
$$

In the water two forces work on her $F_{\mu} \rightarrow F_{\mu}-M g=M a=M \frac{\sqrt{2 h_{0} g}}{\Delta t}$

$$
\leadsto F_{\mu}=\mu\left\{g+\frac{\sqrt{2 h .9}}{\Delta t}\right]
$$

$$
\begin{aligned}
& v_{1}=v_{0}-g t_{1}=-g t_{1} \\
& h=h_{0}-\frac{1}{2} g t_{1}^{2}+v_{0} t_{1} \\
& 0=h_{0}-\frac{1}{2} g t_{1}^{2}+0 \\
& \rightarrow t_{1}=\sqrt{\frac{2 h_{0}}{g}} \\
& v_{1}=-g \sqrt{\frac{2 h_{0}}{g}}=-\sqrt{2 h_{0} g}
\end{aligned}
$$

$$
\overbrace{\mu}^{1 F_{\mu}} \rightarrow F_{\mu}-M g=M a=M \frac{\sqrt{2 h_{0} g}}{\Delta t} \quad \simeq 1.16 \cdot 10^{3} \mathrm{~N}
$$

(M) $M=76.0 \mathrm{~kg}$

$$
w=-g M \quad \begin{array}{ll}
\downarrow=15^{\circ} \\
\beta=10^{\circ}
\end{array}
$$

Equilibrium \downarrow
$y=T_{1} \cdot \cos \alpha+T_{2} \sin \beta-g M=0$
(x) $-T_{1} \sin \alpha+T_{2} \cos \beta=0$

$$
x: \rightarrow \frac{T_{1}}{T_{2}}=\frac{\operatorname{Cos} \beta}{\operatorname{Sin} \alpha}
$$

$$
y: \xrightarrow{b} T_{2}\left[\frac{\cos \beta}{\operatorname{sen} \alpha} \cos \alpha+\sin \beta\right]=g M
$$

$$
\rightarrow T_{2}[\operatorname{Cos} \beta \cdot \cot \alpha+\sin \beta]=g M
$$

$$
\rightarrow \begin{aligned}
& \rightarrow T_{2}=\frac{g M}{\cos \beta \cot \alpha+\sin \beta} \quad \approx 194 N \\
& T_{1} \\
& =\frac{\operatorname{com}}{\cos \beta \cot \alpha+\sin \beta} \cdot \frac{\cos \beta}{\sin \alpha} \simeq 7.4 \cdot 10^{2} \mathrm{~N}
\end{aligned}
$$

Problem 3. (1-06-64)

$$
\begin{aligned}
& \rightarrow-\cos \theta \cdot \mu g M+g M \sin \theta=M a \\
& \rightarrow a=-\mu g \cos \theta+g \sin \theta=g\{\sin \theta-\mu \cos \theta\}
\end{aligned}
$$

b)

Find U at bottom

$$
\begin{aligned}
& v=v_{0}+a t=a t \longrightarrow v=a \sqrt{\frac{25}{a}}=\sqrt{25 a} \\
& s=\frac{1}{2} a t^{2} \rightarrow t^{2}=\frac{25}{a} \\
& \longrightarrow v=\sqrt{25 g[\sin \theta-\mu \cos \theta]} \simeq 4,31 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Problem 4: (1-06-70)

$$
\left.\begin{array}{l}
F_{x}=M \frac{v^{2}}{r} \\
F_{y}=N=g M
\end{array}\right\} \rightarrow \arctan \left(\frac{F_{x}}{F_{y}}\right)=\theta
$$

The force is downwards \rightarrow negative
The force is reduced by the acceleration of the elevator

$$
F_{c}=M \frac{v^{2}}{r}
$$

\bar{F} has to pass through the $C M$ to have equilibrium \bar{N} and \bar{F}_{μ} supply $\overline{F_{1}} \bar{F}_{\mu}$ gives $\overline{F_{C}}$

$$
\arctan \left(\frac{F_{y}}{F_{x}}\right)=\frac{\pi}{2}-\theta
$$

often this problem is solved using the torque of the forces around the touching point of the tire and the ground

Problem 4: (1-07-48)

$$
\begin{aligned}
& M_{1}=5.0 \mathrm{~kg}\left(E_{k i n}\right)_{1}=3\left(E_{k i n}\right)_{2} \\
& M_{2}=8.0 \mathrm{~kg} \quad \rightarrow \frac{1}{2} M_{1} V_{1}^{2}=\frac{3}{2} M_{2} V_{2}^{2} \\
& \rightarrow\left(\frac{v_{1}^{2}}{v_{2}^{2}}\right)=3 \frac{M_{2}}{M_{1}} \\
& \rightarrow \frac{v_{1}}{v_{2}}=\sqrt{3 \frac{M_{2}}{M_{11}}}=\sqrt{\frac{3.8 .0}{5.0}} \approx 2.2
\end{aligned}
$$

C) Wore of Fret

Problem 3: (1-08-28)
Work f_{μ}

$$
W^{F_{\mu}}=\int_{\Delta x} \bar{f}_{\mu} \cdot d \bar{r}=-f_{\mu} \cdot \Delta x=-\mu_{k} \cdot M g \cdot \Delta x
$$

10 motion un force field $F(x)=\left(\frac{3}{\sqrt{x}}\right) N$ which in reality means that " 3 " has dimension...

No friction, no dissipation, 1D conservative force $\rightarrow \Delta E_{\text {total }}=0$

$$
\begin{aligned}
F(x)= & -\frac{d U(x)}{d x}=\left(\frac{3}{\sqrt{x}}\right) N \\
\rightarrow & U(x)=-6 \sqrt{x}+U_{0} \\
& U(x)-U_{0}=(-6 \sqrt{x}) N \\
U(7)= & -6 \sqrt{7}+U_{0} \\
U(2)- & \left.-6 \sqrt{2}+U_{0}\right\}-\Delta\{U(7)-U(2)]=-6[\sqrt{7}-\sqrt{2}]
\end{aligned}
$$

$$
\Delta E_{k \omega}=\frac{M}{2}\left\{V_{1}^{2}-V_{0}^{2}\right\}
$$

and

$$
\begin{aligned}
\text { and } & \Delta E_{k m}+\Delta U=0 \\
\rightarrow & \frac{M}{2}\left\{V_{1}^{2}-V_{0}^{2}\right\}-6\{\sqrt{7}-\sqrt{2}\}=0 \\
\rightarrow & V_{1}^{2}=V_{0}^{2}+\frac{12}{M}\{\sqrt{7}-\sqrt{2}\} \\
& V_{1}=\sqrt{V_{0}^{2}+\frac{12}{M}\{(\sqrt{7}-\sqrt{2}\}} \simeq \sqrt{6,59 m / s}
\end{aligned}
$$

I consider the system to be the mass and the force field, thus there is no external force working on the mass. If the force field is considered to be an external one, then I have to calculate how the external force changes the kinetic energy of the mass by doing work on it

Problem 4: (0-08-40)

Find F_{μ}
component of gravity pulling the girl down the slope $-M g \operatorname{Sin} \theta$ the total force against her motion $-F_{\mu}-M_{g} \operatorname{Sin} \theta$

$$
\left.\begin{array}{ll}
\rightarrow a=-\frac{f_{\mu}}{M}-g \sin \theta, \quad u \operatorname{se} & v^{2}=v_{0}^{2}+2 a S \\
0=v_{0}^{2}+2 a S
\end{array}\right] \begin{array}{ll}
\rightarrow 0=v_{0}^{2}-2 S \frac{f_{\mu}}{M}-2 \operatorname{sg} \sin \theta & \\
\rightarrow-f_{\mu}=\frac{M v_{0}^{2}}{2 S}-M g \sin \theta &
\end{array}
$$

Problem 1: (1-09-34)

find $\bar{P}(t=0.2 \mathrm{~s})$

$$
(\bar{p})=\sqrt{p_{x}^{2}+p_{y}^{2}}
$$

$$
=\sqrt{\left\{v_{0}^{2}-2 g t v_{0} \sin \theta_{0}+(g t)^{2}\right\}}
$$

The angle θ depends on time, $\theta_{0}=\theta(0)$

$$
\begin{aligned}
& \theta(t)= \\
& \begin{aligned}
&|\bar{P}|\left.=0.25 \sqrt{\left[(25)^{2}-2.9 .81 \cdot 0.2 \cdot 25 \cdot \sin \left(\frac{\pi}{6}\right)+(9.81 \cdot 0.2)^{2}\right]}\right] \\
&\left.\approx 6.0 \mathrm{~kg} \frac{P_{y}}{P_{x}}\right) \\
&=\arctan \left\{\frac{v_{0} \sin \theta_{0}-g t}{v_{0} \cos \theta_{0}}\right. \\
& \theta(25)=\arctan \left[\frac{25 \cdot \sin \left(\frac{\pi}{6}\right)-9.81 .02}{25 \cdot \cos \left(\frac{\pi}{6}\right)}\right] \simeq 0.45 \\
& \simeq 26^{\circ}
\end{aligned}
\end{aligned}
$$

So, the angle $\theta(t=0.2 \mathrm{~s})$ is reduced from the initial value, but is still positive. At the top of the track it is 0 , and then turns negative after that

Problem 2: (1-09-50)

$$
m=1.0 \mathrm{~kg}
$$

$$
V \leftarrow
$$

$$
0 \longrightarrow v=6,7 \mathrm{~m} / \mathrm{s}
$$

I assume V_{0} of M to be o initially
conservation of momentum

$$
\begin{gathered}
\overline{P_{M}}+\overline{P_{m}}=0 \\
\rightarrow M V+m v=0 \rightarrow \overline{V=-\frac{m}{M} V} \\
V=-\frac{10 \mathrm{~m} / \mathrm{s}}{65 \mathrm{~m} / \mathrm{s}} 6.7 \frac{\mathrm{~m}}{\mathrm{~s}}=-0.10 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

You slip on the ice in opposite direction to the ball

Problem 3: $(1-10-62)$
Disk of a sander

$$
\begin{array}{ll}
R=0.10 \mathrm{~m} & \nu=15 \frac{\mathrm{rev}}{\mathrm{~S}} \\
M=0.7 \mathrm{~kg} & \omega=2 \pi \nu
\end{array}
$$

$$
\rightarrow \omega_{1}=\omega_{0} \cdot 0.8
$$

a) when sanding ω decreases by $20 \% \rightarrow \omega_{1}=\omega_{0} \cdot 0.8$

Find $\left(E_{\text {kin }}\right)_{1}=\frac{1}{2} I \omega_{1}^{2}, \quad I=\frac{1}{2} M R^{2} \quad\left(E_{x} \cdot 10.5\right)$

$$
\begin{aligned}
\left(E_{k u}\right)_{1} & =\frac{1}{4} M R^{2}\left(\omega_{0} \cdot 0.8\right)^{2}=\frac{1}{4} 0.7 \cdot 0 \cdot 10^{2}(2 \pi \cdot 15 \cdot 0.8)^{2} \\
& \approx 9.95 \mathrm{~J}
\end{aligned}
$$

b) How large is the change in the kinetic energy from ω_{0} to ω_{1} ?

$$
\begin{aligned}
\Delta E_{k i n}=\left(E_{k \omega u}\right)_{1}-\left(E_{k u}\right)_{0} & =\frac{1}{4} M R^{2} \omega_{0}^{2}-\frac{1}{4} M R^{2} \omega_{1}^{2} \\
& =\frac{1}{4} M R^{2} \omega_{0}^{2}\left(1-0.8^{2}\right) \\
& =\left(E_{k i n}\right)_{0} \cdot 0.36
\end{aligned}
$$

Problem 4: (1-10-68)

$$
\begin{cases}0=2 \mathrm{~kg} & R=1 \mathrm{~m}, \text { origunalli } \theta=\frac{\pi}{6}, V_{0}=0 \\ C M, R_{c M} & \text { Find } \omega_{1}=\omega(\theta=0) \\ & I_{m}=I_{r}+I_{s p h} \\ m=0,3 \mathrm{~kg} & I_{r}=\frac{1}{3} M R^{2}, I_{s p h}=\frac{2}{5} m r^{2}+m(R+r)^{2} \\ R_{c M}=\frac{\frac{1}{2} M R+(R+r) m}{M+m}\end{cases}
$$

I use the energy conservation, as both the torque and the angular acceleration are not constant.

$$
\left.E_{\text {pot }}(0)=R_{c m} \cdot\{1-\cos \theta] \mathrm{Mg} \longrightarrow \Delta E_{p o t}=R_{c m}\{1-\cos \theta] \mathrm{Mg}\right]
$$

$$
\left.\omega_{1}=\sqrt{\frac{2(1-\cos \theta) \cdot\left(\frac{M}{2} R+m(R+r)\right) M g}{(M+m)\left\{\frac{M R^{2}}{3}+\frac{2 m r^{2}}{5}+m(R+r)^{2}\right\}}}=0.991 / 5\right)
$$

Problem 5: ($-11-40$)

Remember

$$
\begin{aligned}
L_{1} & =\bar{r}_{1} \times \bar{p}_{1} \\
L_{1} & =r_{1} p_{1} \sin \theta_{1} \\
& =p_{1} \cdot h_{1}
\end{aligned}
$$

$$
\begin{aligned}
& E_{k u n}\left(\theta=\frac{\pi}{6}\right)=0 \\
& \rightarrow \Delta E_{k u}=\frac{1}{2}\left[I_{r}+I_{s p h}\right] \omega_{1}^{2}
\end{aligned}
$$

conservation of the energy

$$
\begin{aligned}
& \rightarrow \Delta E_{\text {pot }}=\Delta E_{k i n} \rightarrow R_{c m}[1-\operatorname{Cos} \theta] M_{g}=\frac{1}{2}\left[I_{r}+I_{s p h}\right] \omega_{1}^{2} \\
& \rightarrow \omega_{1}=\sqrt{\frac{2(1-\operatorname{Cos} \theta) R_{c m} M_{g}}{\left(I_{r}+I_{s p h}\right)}}
\end{aligned}
$$

to check, dimension

$$
\left[\omega_{1}\right]=\frac{1}{T}=\frac{L M L}{T^{2} M L^{2}}=\frac{1}{T} \quad \text { ok }
$$

$L=L_{1}+L_{2} \quad L_{1}$ and L_{2} have opposite directions

$$
|L|=h_{1} m v-h_{2} m v=m v\left\{h_{1}-h_{2}\right\}
$$

but, $\left|h_{1}-h_{2}\right|=d$
Thus we will always have the same angularmomentum for the system, independent of the choice we make for the reference point o

Problem 6: (-11-50)

Find minimum $L_{\text {o }}$ for the roller coaster to stay on the track we need at least gravity to supply

$$
F_{c}=M R \omega_{1}^{2}=M \frac{v_{1}^{2}}{R}
$$

So, minimum angular frequency

$$
\begin{aligned}
& W=M g=M R \omega_{1}^{2} \rightarrow \omega_{1}^{2}=\frac{g}{R} \rightarrow L_{1}=R^{2} M \sqrt{\frac{g}{R}} \\
& L_{1}=R \cdot M(\underbrace{\left(\omega_{1} R\right)}_{v_{1}}=M \omega_{1}^{2} \\
& L_{0}=M R^{2} \omega_{0}
\end{aligned}
$$

Energy conservation

$$
\begin{gathered}
E_{1}=E_{0} \\
\frac{1}{2} M(\omega, R)^{2}+g M 2 R=\frac{1}{2} M\left(\omega_{0} R\right)^{2} \\
\rightarrow(\omega, R)^{2}+g 4 R=\left(\omega_{0} R\right)^{2} \\
\rightarrow\left(\omega_{0} R\right)=\left(\left(\omega_{1} R\right)^{2}+g 4 R\right.
\end{gathered}
$$

$$
\rightarrow L_{0}=M R^{2} \omega_{0}=M R \sqrt{\left(\omega_{1} R\right)^{2}+4 g R}
$$

So, $L_{0} \geqslant M R \sqrt{(\omega, R)^{2}+4 g R}=M R \sqrt{g R+4 g R}=M R \sqrt{5 g R}$

$$
L_{0} \geqslant 7.43 \cdot 10^{6} \frac{\mathrm{~kg} \mathrm{M}^{2}}{\mathrm{~s}}
$$

Problem 1: (1-14-58)

If only the tire pressure holds up the weight on the tire $w=g M, M=80.0 \mathrm{~kg}$

$$
\begin{aligned}
& p A=M g \rightarrow A=\frac{M g}{P} \\
& A=\frac{80 \cdot 9.81}{3.50 \cdot 10^{5}} \mathrm{~m}^{2} \sim 2.24 \cdot 10^{-3} \mathrm{~m}^{2}=22.4 \mathrm{~cm}^{2}
\end{aligned}
$$

Problem 3: (1-14-88)

show that

$$
\begin{aligned}
& v_{2}=\left(\frac{2 g^{\prime} g h}{\rho}\right) \\
& \text { Bernoulli } \\
& P_{1}+\frac{1}{2} S^{2}=P_{2}+\frac{1}{2} S^{2}
\end{aligned}
$$

$$
V_{1}=0 \rightarrow p_{1}=p_{2}+\frac{1}{2} S^{2} \rightarrow\left(p_{1}-p_{2}\right)=\frac{1}{2} \rho V_{2}^{2}
$$

but

$$
\begin{aligned}
& \text { out }\left(p_{1}-p_{2}\right) \cdot A=h \cdot \rho^{\prime} g A \Leftrightarrow \frac{1}{2} \rho^{\prime} V_{2}^{2}=h \rho^{\prime} g \\
& \rightarrow v_{2}^{2}=\frac{2 \rho^{\prime} g h}{\rho} \rightarrow v_{2}=v=\sqrt{\left(\frac{2 \rho^{\prime} g h}{\rho}\right)}
\end{aligned}
$$

Problem 2: (1-14-68)
Buoyant force of a 2.00 L He balloon

$$
H_{e}: \rho_{H e}=1.80 \cdot 10^{-1} \mathrm{~kg} / \mathrm{m}^{3}
$$

Air: Pair $=1.29 \cdot 10^{\circ} \mathrm{kg} / \mathrm{m}^{3}$
a) \int

$$
\begin{aligned}
\rightarrow F_{B} & =\{1.29\} \frac{\mathrm{kg}}{\mathrm{~m}^{3}} 2\left(10^{-3} \mathrm{~m}^{3}\right) .9 .81 \mathrm{~m} / \mathrm{s}^{2} \\
& =0.025 \mathrm{~N}
\end{aligned}
$$

b) $M=1.5 \mathrm{~g}$ of balloon

$$
\begin{aligned}
& F_{B}-W_{b}=F_{B}-F_{H c} \cdot V_{g}-g M=F^{\text {lift }} \\
& \rightarrow F^{\text {lift }}=(0,125-(0,80 \cdot 0,002+0,0015) \cdot 9.81) \mathrm{N} \simeq 6.8 \cdot 10^{-3} \mathrm{~N}
\end{aligned}
$$

b) In Hg manometer if $h=0.200 \mathrm{~m}$ find v for air

$$
\begin{aligned}
v=\sqrt{2 g h\left(\frac{\rho^{\prime}-g}{\rho_{\text {air }}}\right)} & =\sqrt{2.9 .81 \cdot 0.2\left(\frac{1.36 \cdot 10^{4}}{1.29}\right)} \mathrm{m} / \mathrm{s} \\
& =203 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Problem 4 (1-14-102)
Estimate N_{k} for a fire hose and a nozzle

$$
\int \begin{aligned}
& \text { Flow } 40.0 \mathrm{~L} / \mathrm{s} \\
& d_{h}=6.40 \mathrm{~cm} \\
& h=10 \mathrm{~m} \\
& d_{n}=3.00 \mathrm{~cm}
\end{aligned} \quad \begin{aligned}
& \eta_{H_{2}}=1.002 \cdot 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s} \\
& P_{0}=1.62 \cdot 10^{6} \mathrm{~Pa}
\end{aligned}
$$

with Ex. 14.7 in the book in mind and the eq. for N_{R} I see we only need the equation of continuity

Nozzle:

$$
\left(N_{R}\right)_{n}=\left(N_{R}\right)_{n} \cdot\left(\frac{d_{n}}{d_{n}}\right)=1.69 \cdot 10^{6}
$$

So, both the flow in the hose and the nozzle could be considered turbulent

Hose:

$$
\begin{aligned}
\left(N_{R}\right)_{n} & =\frac{2 g v_{1}\left(\frac{d_{n}}{2}\right)}{\eta}=\frac{2 \rho\left(\frac{Q_{1}}{\pi\left(\frac{d_{n}}{2}\right)^{2}}\right)\left(\frac{d_{1}}{2}\right)}{\eta} \\
& =\frac{2 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3} \cdot 12.4 \mathrm{~m} / \mathrm{s} \cdot 0.032 \mathrm{~m}}{1.002 \cdot 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}} \approx \frac{7.92 \cdot 10^{5}}{}
\end{aligned}
$$

Problem 1: ($11-01-50$)
How much does the Eiffel tower lengthen when $\Delta T=15.0{ }^{\circ} \mathrm{C}$
Table 1.2 steel $\rightarrow \alpha=12 \cdot 10^{-6} 1 / \mathrm{c}$

$$
\begin{aligned}
\Delta L & =\alpha \cdot L \cdot \Delta T \quad L=321 \mathrm{~m} \\
& =12 \cdot 10^{-6} \cdot 321.15 \mathrm{~m}=0.058 \mathrm{~m}=5.8 \mathrm{~cm}
\end{aligned}
$$

Problem 2: (11-01-84)

$$
\prod_{1 / 1 / 1111}^{A l}, M=0.250 \mathrm{~kg}
$$

at $T_{0}=25.0^{\circ} \mathrm{C}$
put in freezer and $Q=388 \mathrm{~kJ}$ taken away from the system,
find the final temperature T_{f}
(1) First, assume no freezing (we might be wrong on this point, but try)

$$
\begin{aligned}
Q=\left\{m C_{H_{2} O}+M \cdot C_{a l}\right\} \Delta T & \\
\rightarrow \Delta T=\frac{Q}{m C_{H_{2} \mathrm{O}}+M \cdot C_{a l}} & =\frac{388 \cdot 10^{3} \mathrm{~J}}{0,8 \mathrm{~kg} \cdot 4186 \frac{\mathrm{~J}}{\mathrm{~kg} \circ} \mathrm{C}}+0.25 \mathrm{~kg} \cdot 900 \frac{\mathrm{~J}}{\mathrm{~kg} \mathrm{C}}
\end{aligned}
$$

.. so the no freezing is a silly assumption, try with freezing, but same specific heat for

$$
\begin{aligned}
& Q=\left\{m \cdot C_{H_{2} \mathrm{O}}+M \cdot C_{a l}\right\} \Delta T+m L_{f}^{\mathrm{H}_{2} \mathrm{O}} \quad \begin{array}{l}
\text { water and ice (correct } \\
\text { that later) }
\end{array} \\
& \rightarrow \Delta T=\frac{\left\{Q-m L_{f}^{\mathrm{H}_{2} \mathrm{O}}\right\}}{m C_{\mathrm{H}_{2} \mathrm{O}}+M \cdot C_{a l}}=\frac{388 \cdot 10^{3} \mathrm{y}-0,8 \mathrm{~kg} \cdot 334 \cdot 10^{3} \mathrm{y} / \mathrm{kg}}{\text { as before }}
\end{aligned}
$$

$$
\approx 338^{\circ} \mathrm{C}
$$

$$
\rightarrow \overline{T_{F}}=(25-33.8) \simeq-8.8^{\circ} \mathrm{C}
$$

Specific heat of ice is only 2090 7 (kg.K) see Table $1.3 \mathrm{cn} v o l$ II
Problem 3: (11-0.2-44)

$$
\rightarrow
$$

$$
Q=\left\{m C_{H_{2} \mathrm{O}}+M C_{a l}\right\} \cdot \Delta T_{1}+m L_{f}^{H_{2} \mathrm{O}}+\left\{m C_{i c e}+M C_{a l}\right\} \cdot \Delta T_{2}
$$

where

$$
\Delta T_{1}=25.0{ }^{\circ} \mathrm{C}
$$

but we need to find ΔT_{2}

$$
\begin{aligned}
\Delta T_{2} & =\frac{Q-\left[m C_{H_{2} \mathrm{O}}+M C_{a L}\right] \Delta T_{1}-m L_{f}^{H_{2} \mathrm{O}}}{m C_{\text {ire }}+M C a l} \\
& =20.5{ }^{\circ} \mathrm{C}
\end{aligned}
$$

thus the final temperature of the soup and the pot in the freezer will be

$$
T_{f}=-20.5{ }^{\circ} \mathrm{C}
$$

but remember

$1 \mathrm{~Pa}=1 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=1 \frac{\mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}}{\mathrm{~m}^{2}}=1 \frac{\mathrm{~kg}}{\mathrm{~m} \mathrm{~s}^{2}}$
$\rightarrow P=1.83 \cdot 10^{7} P_{a}$
Problem 4 (11-o2-58)
How much Q (heat) is needed to raise $T_{0}=25.0^{\circ} \mathrm{C} \rightarrow 33.0^{\circ} \mathrm{C}=T_{f}$
a) for air $n=1.5$ mod, diatomic, Table 2.3: $C_{v}=2.5 R$ $Q=Q_{V}^{\text {air }} \Delta T=n(2.5 R) \Delta T \simeq 1.5$ wole $\left(2.5 .8 .31 \frac{\mathrm{~J}}{\text { wol. } \cdot}\right) .8 \simeq 250 \mathrm{~J}$
b) For Xenou, ideal gas $C_{v}=\frac{3}{2} R$

$$
\rightarrow Q^{\text {xewn }}=n(1.5 R) \Delta T \quad \approx 150 \mathrm{~J}
$$

Problem 1: (1-03-28)

Quasi-static processes
Find w done by the gas
The type of gas is not specified
a)

$$
\begin{aligned}
W_{A B} & =\int_{V_{A}}^{V_{B}} p d v=P_{A} \int_{V_{A}}^{V_{B}} d v \text { as } P \text { is constant } \\
& =P_{A}\left(V_{B}-V_{A}\right)=1.013 \cdot 10^{5} \mathrm{~Pa} \cdot 2 \cdot 10^{-3} \mathrm{~m}^{3} \\
& =1.013 \cdot 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \cdot 2 \cdot 10^{-3} \mathrm{~m}^{3}=203 \mathrm{Nm}=203 \mathrm{~J}
\end{aligned}
$$

Problem 2: (11-03-76)
a) Adiabatic

$$
\begin{aligned}
& V_{i}=2.0 \cdot 10^{-3} \mathrm{~m}^{3} \\
& V_{f}=2.5 \cdot 10^{-3} \mathrm{~m}^{3}
\end{aligned}
$$

Find T_{f} and P_{f}

$$
\gamma=5 / 3
$$

$p V^{r}=$ coust
$p^{1-\gamma} T^{\gamma}=$ Covet.

$$
\begin{equation*}
T V^{\gamma-1}=\text { constr } \quad(3.14) \tag{3.13}
\end{equation*}
$$

$$
\rightarrow P_{f} V_{f}^{\gamma}=p_{i} V_{i}^{\gamma} \rightarrow\left\{\begin{aligned}
P_{f} & =P_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma} \\
& =5 \cdot 0 \cdot 10^{5} P_{a} \cdot\left(\frac{2.0}{2.5}\right)^{5 / 3} \\
& =3.45 \cdot 10^{5} P_{a}
\end{aligned}\right.
$$

b)

$$
\begin{aligned}
& W_{A D B}=\underbrace{W_{A D}}_{=0}+W_{D B}=W_{D B} \\
& W_{D B}=\int_{V B}^{P d V}=0 \\
& =2 \cdot W_{V D} \\
& =2
\end{aligned}
$$

c) $W_{A C B}=W_{A C}+\underbrace{W_{C B}}_{=0}=W_{A C}=W_{D B}=406 \mathrm{~J}$
d)

$$
W_{A D C B}=\underbrace{W_{A D}}_{\begin{array}{c}
=0 \\
d V=0
\end{array}}+W_{D C}+\underbrace{W_{C B}}_{=0}=W_{D C}=3 W_{A B}
$$

b) isothermal L
find T_{t} and P_{f}

$$
\begin{aligned}
& \rightarrow T_{f}=T_{i}=300 k \\
& P V=n R T, \quad T=\text { Conct. } \rightarrow P_{f} V_{f}=P_{i} V_{i} \\
& \rightarrow P_{f}=P_{i}\left(\frac{V_{f}}{V_{i}}\right)
\end{aligned} \begin{aligned}
& =5.0 \cdot 10^{5} \mathrm{~Pa}\left(\frac{20}{2.5}\right) \\
& =40 \cdot 10^{5} P_{a}
\end{aligned}
$$

Problem 3: (11-04-50)
Ideal gas Isothermal reversitble expansion

$$
\begin{aligned}
& n=1 \mathrm{~mol} \\
& V_{f}=2 V_{i}
\end{aligned}
$$

a) Find $\triangle S_{\text {gas }}, \quad p V=n R T, \quad E_{\text {int }}=\frac{3}{2} n R T$
b) isothermal $\rightarrow T_{F}=T_{i}$

This is thus not a proper question
Problem 4: (11-04-64)
Carnot engin: $e=1-\frac{T_{c}}{T_{n}}$

$$
e_{i}=0.60 \rightarrow e_{+}=0.55 \text { as } T_{c}^{i} \rightarrow T_{c} f
$$

$$
T_{n}{ }^{f}=T_{n} i
$$

a) Find $T_{n}^{i}=T_{n}^{+}$

$$
\begin{aligned}
& e_{i}=1-\frac{T_{c}^{i}}{T_{n}^{i}} \\
& \rightarrow e_{i}^{i}-1=-\frac{T_{c}}{T_{n}} \\
& \rightarrow \frac{T_{c}^{i}}{T_{n}^{i}}=1-e_{i} \\
& \rightarrow \frac{T_{n}}{}{ }^{i}=\frac{1 c}{1-e_{i}} \\
&=\frac{(27+273) \mathrm{k}}{1-0.6} \\
&=750 \mathrm{~K}=477{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
e_{+} & =1-\frac{T_{c}^{f}}{T_{u}^{f}}=1-\frac{T_{c}^{f}}{T_{u}^{i}} \\
\rightarrow \frac{T_{c}}{}{ }^{f} & =1-e_{t} T_{n}^{i} \\
\rightarrow T_{c}^{f} & =T_{u}^{i}\left(1-e_{t}\right)=\left(\frac{T_{c}^{i}}{1-e_{i}}\right)\left(1-e_{t}\right) \\
& =750 \cdot\left(1-0.55^{\circ}\right) k \\
& \simeq 338 \mathrm{~K} \simeq 64.5{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow \Delta E_{\text {int }}=0 \\
& \Delta E_{\text {int }}=Q-W=0 \rightarrow W=Q \\
& \begin{aligned}
W=\int_{U_{i}}^{U_{f}} p d V=n R T \int_{V_{i}}^{V_{f}} \frac{d U}{V} & =n R T \ln \left(\frac{V_{f}}{U_{i}}\right) \\
& =n R T \ln (2)
\end{aligned} \\
& \rightarrow Q=n R T \operatorname{Ln}(2) \\
& \text { isothermal } \rightarrow \Delta S=\frac{Q}{T}=n R h(2) \\
& =1 \mathrm{~mol} \cdot 8.314 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{mal}} \ln (2)=5,76 \frac{\mathrm{~J}}{\mathrm{~K}}
\end{aligned}
$$

Problem 1 ((1-05-50)

If charged -e
Na Cl singly charged, what force is

$$
\begin{aligned}
d & =2.82 \cdot 10^{-10} \mathrm{~m} \\
& =2.82 \mathrm{~A}^{0}
\end{aligned} \quad\left[F=|\bar{F}|=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{d^{2}}=k_{e} \frac{e^{2}}{d^{2}}\right.
$$

$$
\rightarrow a=-9+\frac{e}{m} E=-9.81+\frac{1.602 \cdot 10^{-19}}{20 \cdot 10^{-18}} 100
$$

$$
\begin{aligned}
d & =2.82 \cdot 10^{-10} \mathrm{~m} \\
& =2.82 \mathrm{~A}^{0} \\
e= & 1.602 \cdot 10^{-19} \mathrm{C} \\
k_{e}=8.99 \cdot 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}} \quad \longrightarrow F & =\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{d^{2}}=k_{e} \frac{e^{2}}{d^{2}} \\
&
\end{aligned}
$$

$$
=-18 \mathrm{~m} / \mathrm{s}^{2}
$$

Problem 3: (11-06-52)

$r_{0}=3.0 \mathrm{~cm}$
Use Gan B
$r_{i}=20 \mathrm{~cm}$
$r_{c}=1.0 \mathrm{~cm}$
$\lambda=\frac{4 \infty}{m}$
$F_{g}=m g, F_{E}=e E$
$m=20 \cdot 10^{-15}=2.0 \cdot 10^{-18} \mathrm{~kg}$
$\left.\begin{array}{l}F_{g}=1.96 \cdot 10^{-17} \mathrm{~N} \\ F_{E}=1.602 \cdot 10^{-17} \mathrm{~N}\end{array}\right\}$ comparable
for e

The green vertical lines are only to indicate the discontinuity of the electrical field at the metal surfaces, that are caused by the surface charge there

Problem 4: (11-06-68)
Two parallel plates

move $N_{e}=1.0 \cdot 10^{12}$ electrons
Initially $\nabla_{1}=\sigma_{2}=0$, but after
the move of Ne

$$
\begin{aligned}
& \text { a) } \left.\begin{array}{l}
\overline{V_{1}}=+N_{e} \frac{e}{A} \\
\overline{V_{2}}=-N_{e} \frac{e}{A}
\end{array} \right\rvert\, \\
& \overline{\bar{E}=\frac{\nabla_{1}}{\epsilon_{0}} \hat{x}}
\end{aligned}
$$

$$
=-\frac{1 \cdot 10^{12} \cdot 1.602 \cdot 10^{-19}}{8.85 \cdot 10^{-12} \cdot 400 \cdot 10^{-4}} \hat{x} \mathrm{~N} / \mathrm{c}
$$

$$
=-4.53 \cdot 10^{5} \hat{x} \mathrm{~N} / \mathrm{c}=-4.53 \cdot 10^{5} \hat{x} \mathrm{~V} / \mathrm{m}
$$

Problem 1: (1-07-54)
Compare the electrical potential from a point charge and a short line charge

\qquad

$$
V_{p}(x)=\frac{Q}{4 \pi \epsilon_{0} L}\left(\frac{L}{x}\right)
$$

Point charge:
$V_{p}(x)=\frac{1}{4 \pi \epsilon_{0}} \frac{\Phi}{x}, \quad V_{p}(\infty)=0 \leftarrow$ boundary condition
line charge:
Use Ex. $7.13 \rightarrow V_{L}(x)=\frac{1}{4 \pi \epsilon_{0}} \lambda \operatorname{Ln}\left[\frac{L+\sqrt{L^{2}+4 x^{2}}}{-L+\sqrt{L^{2}+4 x^{2}}}\right]$
same boundary condition, $\lambda L=Q$

Problem 2: (11-07-74)

$q=+3 \mu C$ Find the energy of
$a=2 \mathrm{~cm}$ the configuration

$$
W=\frac{k}{2} \sum_{\substack{i, j \\ i \neq j}}^{N} \frac{q_{i} q_{j}}{r_{i j}}
$$

sum over pairs, does not matter where the origin of the coordinate system is,
7.8/2 pairs

$$
\begin{aligned}
W & =k q^{2}\left\{\frac{3}{a}+\frac{3}{\sqrt{2} a}+\frac{1}{\sqrt{3} a}\right] \cdot 28 \\
& =\frac{k q^{2}}{a}\left\{3 \cdot \frac{3}{\sqrt{2}}+\sqrt{3}\right] \cdot 28 \\
& =\frac{k q^{2}}{a^{1}} \cdot 160
\end{aligned}
$$

rewrite

$$
V_{L}(x)=\frac{Q}{4 \pi \epsilon_{\epsilon} L} \ln \left[\frac{\sqrt{1+4\left(\frac{x}{L}\right)^{2}}+1}{\sqrt{1+4\left(\frac{x}{L}\right)^{2}}-1}\right] \rightarrow \begin{aligned}
& \operatorname{pLot}\left(\frac{4 \pi \epsilon_{0} L V}{Q}\right) v \cdot s \cdot \frac{x}{L} \\
& \text { dimensionLess }
\end{aligned}
$$

close to the charge the potential of the point charge is stronger. At distance $x / L=1$ both have the same value, and at infinity they have the same value o why? Yes, as far away both toed to look like a point charge. This would never be true for an infinite line charge, which does not have any natural length scale

Problem 3: (11-08-38)
Initially $\longrightarrow \underline{\text { Finally }}$

$v=500 \mathrm{~V}$
a) find Q_{1}^{i}

initially $Q_{2}=0$

$$
C_{1}=\frac{Q_{1}^{i}}{V_{1}^{i}} \rightarrow Q_{1}^{i}=V_{1}^{i} C_{1}
$$

b) Find Q_{1}^{f} and Q_{2}^{f}
c) $V_{1}^{f}=V_{2}^{+}$: equilibrium, we us this in b)
$V_{1}^{f}=\frac{Q_{1}^{f}}{C_{1}}$ and $V_{2}^{f}=\frac{Q_{2}^{f}}{C_{2}}$
Problem 4: (11-09-58)
 of charge

Two linear equations for the two unknown quantities Q_{1}^{f} and Q_{2}^{f}
(1) $\rightarrow Q_{2}^{F}=Q_{1}^{f} \frac{C_{2}}{C_{1}}$ use in 2

$$
\begin{array}{ll}
\rightarrow Q_{1}^{+}+Q_{1}^{f} \frac{C_{2}}{C_{1}}=Q_{1}^{i} \rightarrow Q_{1}^{f}\left[1+\frac{C_{2}}{C_{1}}\right]=Q_{1}^{i} \\
\rightarrow Q_{1}^{f}=\frac{Q_{1}^{i}}{1+\frac{C_{2}}{C_{1}}} & Q_{2}^{f}=\frac{Q_{1}^{i} \frac{C_{2}}{C_{1}}}{1+\frac{C_{2}}{C_{1}}}
\end{array}
$$

100 W
incand. 16 W LED in terms of light
100 W
incand. 16 W LED in terms of light
Problem 4: (11-09-58)

$$
1 k W h_{r}=\$ 0.10
$$

4 hr per day in one year

$$
\begin{aligned}
& \rightarrow P_{L E D} \cdot 4 \cdot 365=16 \cdot 4 \cdot 365=\text { Energy } \\
&=23360 \mathrm{Whr} \\
&=23.360 \mathrm{kWhr}
\end{aligned}
$$

\rightarrow Cost $=\$ 2.34$

Problem 1: (11-11-56)
0^{16}

$$
M_{16}=2.66 \cdot 10^{-26} \mathrm{~kg} \quad B=1.20 \mathrm{~T}
$$

Singly charged

$$
\begin{aligned}
& \text { Singly Charged } \\
& U=5.00 \cdot 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned} \frac{M_{16}}{M_{18}}=\frac{16}{18}
$$

$$
r=\frac{m v}{q B}
$$

$$
\Delta x=2 r_{18}-2 r_{16}=2\left(r_{18}-r_{16}\right)
$$

$$
=2 \frac{\sim}{q B}\left\{M_{18}-M_{16}\right\}
$$

$$
\begin{aligned}
\Delta x & =\frac{2 v}{q B} M_{16}\left[\frac{18}{16}-1\right] \quad\left(=\frac{2 v}{q B} M_{16}\left[\frac{M_{18}}{M_{16}}-1\right\}\right. \\
& =\frac{2 \cdot 5 \cdot 10^{6} \cdot 2 \cdot 66 \cdot 10^{-26}}{1.602 \cdot 10^{19} \cdot 1.20}\left(\frac{18}{16}-1\right)=0.173 \mathrm{~m}
\end{aligned}
$$

Problem 3: (11-12-26)

Use $B=\frac{\mu_{0} I}{2 \pi R}$
with right hand rule
(P): $\bar{B}=\frac{\mu_{0} I_{2}}{2 \pi a} \hat{z}-\frac{\mu_{0} I_{1}}{2 \pi a} \hat{z}=\frac{\mu_{0} \hat{z}}{2 \pi a}\left\{I_{2}-I_{1}\right\}$
(P): $\bar{B}=-\frac{\mu_{0} I_{2}}{2 \pi 2 a} \hat{z}-\frac{\mu_{0} I_{1}}{2 \pi 4 a} \hat{z}=-\frac{\mu_{0} \hat{z}}{4 \pi a}\left[I_{2}+\frac{I_{1}}{2}\right]$

Problem 2: (1-12-18)

Use Biot-Savart and Ex. 12.2
$B-S$ gives $B(P)=0$ for the straight segments, but not for the arcs
inner arc:

$$
\begin{aligned}
\bar{B} & =-\frac{\mu_{0} I \pi}{4 \pi a} \hat{z} \quad \bar{B}=+\frac{\mu_{0} I \pi}{4 \pi b} \hat{z} \\
& \rightarrow \overline{B_{p}}=-\frac{\mu_{0} I}{4} \hat{z}\left(\frac{1}{a}-\frac{1}{b}\right)
\end{aligned}
$$

Problem 4: (11-12-38)

At what distance $B(y)=B(0) / 2$ use section 12.4

$$
\rightarrow \frac{R^{2}}{2\left(y^{2}+R^{2}\right)^{3 / 2}}=\frac{1}{4 R} \rightarrow \quad \frac{4 R^{6}}{\left(y^{2}+R^{2}\right)^{3}}=1
$$

or $\frac{4^{1 / 3} R^{2}}{\left(y^{2}+R^{2}\right)}=1 \rightarrow 4^{1 / 3} R^{2}=y^{2}+R^{2}$ $\rightarrow y^{2}=\left(4^{1 / 3}-1\right) R^{2}=0.5874 R^{2}$ $y=\sqrt{4^{1 / 3}-1} \cdot R \approx 0.7664 R$

