a)

a: Constant
$v_{1}=v_{0}+a t_{1}=a t_{1} \rightarrow t_{1}=\frac{v_{1}}{a}=\frac{2.00}{1.40} \mathrm{~s}=1.43 \mathrm{~s}$
b) $U_{0}=2.00 \mathrm{~m} / \mathrm{s}$ $v_{1}=0$
$t_{0}=0 \quad a=? \quad t_{1}=0,800 \mathrm{~s}$
$v_{1}=v_{0}+a t_{1}$
$0=v_{0}+c t_{1} \rightarrow a=-\frac{v_{0}}{t_{1}}=-\frac{2.00 \mathrm{~m} / \mathrm{s}}{0,800 \mathrm{~s}}=-2.50 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
a) $\begin{aligned} & v_{0}=9.00 \mathrm{~m} / \mathrm{s} \quad \square \\ & t=0\end{aligned} \quad \square=-2.00 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{array}{ll}
t_{0}=0 & t_{1}=5.00 \mathrm{~s} \\
s_{0}=0 & s_{1}=?
\end{array}
$$

$$
v_{1}=v_{0}+a t_{1}=[9.00-2.00 \cdot 5.00] \mathrm{m} / \mathrm{s}=-1.00 \mathrm{~m} / \mathrm{s} b
$$

so, she has turned around

$$
\begin{aligned}
S_{1} & =S_{0}+v_{0} t_{1}+\frac{1}{2} a t_{1}^{2} \\
& =\left\{0+9.00 \cdot 5.00-\frac{1}{2} 2.00 \cdot(5.00)^{2}\right\} m=20.0 \mathrm{~m}
\end{aligned}
$$

So, she turns around, that is probably not a usual behavior here...

Problem 3, (1-03-60)

Problem 4 (1-04-56)

Vertical motion
$h_{1}=0=h_{0}+\frac{1}{2} g t_{1}^{2}$
Horizontal motion

$$
R=0+v_{0} t_{1} \rightarrow v_{0}=\frac{R}{t_{1}} \text { or } t_{1}=\frac{R}{v_{0}}
$$

$$
\left\lfloor 0=h_{0}+\frac{g}{2}\left(\frac{R}{v_{0}}\right)^{2} \longrightarrow \begin{array}{l}
v_{0}^{2} h_{0}+\frac{9}{2} R^{2}=0 \\
v_{0}^{2}=-\frac{9 R^{2}}{2 h_{0}}
\end{array}\right.
$$

$$
\begin{aligned}
& -\left(\frac{k}{v_{0}}\right)=-\frac{9 R^{2}}{2 h_{0}^{2}} \\
& \rightarrow v_{0}=\sqrt{-\frac{g R^{2}}{2 h_{0}}}=2.7 \cdot 10^{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

